Show simple item record

dc.contributor.authorCadavid, Edwin
dc.contributor.authorVargas, Fabio
dc.contributor.authorLÓPEZ GÓMEZ, MARIA ESPERANZA
dc.contributor.authorMesa, Carlos
dc.contributor.authorVargas, Fabio
dc.contributor.authorLATORRE, GUILLERMO
dc.contributor.authorPeña Rodriguez, Gabriel
dc.date.accessioned2021-11-26T22:00:24Z
dc.date.available2021-11-26T22:00:24Z
dc.date.issued2018-04-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1471
dc.description.abstractA chromite mineral and two industrial residues produced in the petrochemical and thermoelectric industries, were selected, characterized, processed and deposited on refractory bricks. By means of X-ray fluorescence and X-ray diffraction the chemical composition and crystallographic phases of raw materials were analyzed, morphology and particle size was determinate using Scanning Electron Microscopy. The materials were deposit by oxyacetylene thermal spray on silica-alumina refractory bricks and high alumina low cement concrete, commercial references ER-40 and CBC-50 from ERECOS S.A.S.. The parameters used for the coating deposition were optimized based on preliminary test and simulations using the Jets&powders software. The chromite mineral coating displayed greater structure homogeneity than the other two coatings; the last ones presented partially melted particles and high porosity. However, based on the chemical composition, the response to adhesion test and the crystallographic phases present in the coatings, all of them are potential candidates to be used as protective barriers against corrosive effects on refractories.eng
dc.description.abstractSe seleccionaron, caracterizaron, procesaron y depositaron sobre ladrillos refractarios, dos residuos industriales provenientes de procesos de la industria petroquímica y termoeléctrica, así como un mineral de cromita. La composición química y las fases cristalográficas de cada uno de estos polvos fueron determinadas mediante Fluorescencia y Difracción de Rayos X, mientras que la morfología y tamaño de partícula fueron analizados mediante Microscopía Electrónica de Barrido. Estos polvos fueron depositados mediante proyección térmica oxiacetilénica sobre ladrillos refractarios silico-aluminosos y concretos de alta alúmina de bajo cemento, cuyas referencias comerciales de la empresa Erecos S.A.S. son ER-40 y CBC-50 respectivamente. Los parámetros utilizados para la elaboración de los recubrimientos fueron optimizados a partir de recubrimientos elaborados previamente y de los resultados de simulaciones realizadas con el software Jets&poudres. De los recubrimientos obtenidos el que presentó mayor homogeneidad en su estructura fue el elaborado con el mineral de cromita, los demás evidenciaron gran cantidad de partículas sin fundir y mayor porosidad. Sin embargo, por la composición química, su buena adherencia y las fases presentes en los recubrimientos todos son potenciales candidatos para ser usados como medio protector contra el deterioro de refractarios expuestos a altas temperaturas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherDYNAspa
dc.relation.ispartofDYNA
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/65539spa
dc.titleManufacture of oxy-acetylene thermally sprayed coating on refractory subtrates from unconventional feedstock materialeng
dc.typeArtículo de revistaspa
dcterms.referencesHerrmann, M., Toma, F.L., Berger, L.M., Kaiser, G. and Stahr, C.C., Comparative study of the corrosion resistance of thermally sprayed ceramic coatings and their bulk ceramic counterparts. J Eur Ceram Soc., 34(2), pp. 493-504, 2014. DOI: 10.1016/j.jeurceramsoc.2013.08.033.spa
dcterms.referencesVargas, F., Ageorges, H., Fauchais, P., López, M.E. and Calderon, J.A., Permeation of saline solution in Al2O3-13wt.% TiO2 coatings elaborated by atmospheric plasma spraying. Surf Coatings Technol., 220, pp. 85-89, 2013. DOI: 10.1016/j.surfcoat.2012.11.038.spa
dcterms.referencesLiu, H.F., Xiong, X., Li, X.B. and Wang Y.L., Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt. Corros Sci., 85, pp. 87-93, 2014. DOI: 10.1016/j.corsci.2014.04.001.spa
dcterms.referencesFauchais, P.L., Heberlein, J.V.R. and Boulos, M.I., Thermal spray fundamentals from powder to part. Boston, MA: Springer US; 2014. DOI: 10.1007/978-0-387-68991-3.spa
dcterms.referencesSecosan, I.F., Utu, D., Serban, V.A. and Brandl, W., Wear resistance of internal WC-CoCr coatings produced by high velocity oxy-fuel spraying. 4th Int Conf Adv Mater Struct AMS 2011. 188, pp.416-421, 2012. DOI: 10.4028/www.scientific.net/SSP.188.416.spa
dcterms.referencesBolelli, G., Cannillo, V., Lugli, C., Lusvarghi, L. and Manfredini, T., Plasma-sprayed graded ceramic coatings on refractory materials for improved chemical resistance. J Eur Ceram Soc., 26(13), pp. 2561-2579, 2006. DOI: 10.1016/j.jeurceramsoc.2005.07.066.spa
dcterms.referencesLi, J.F., Li, L. and Stott, F.H., Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surf Coatings Technol., 180, pp. 500-505, 2004. DOI: 10.1016/j.surfcoat.2003.10.127.spa
dcterms.referencesAraque-Pabón, M., Peña-Rodríguez, G. y Vargas-Galvis, F., Desempeño mecánico y tribológico de baldosas cerámicas de arcilla roja recubiertas por proyección térmica a partir de alúmina. Tecno Lógicas, 18, pp. 125-135, 2015.spa
dcterms.referencesPawlowski, L., Strategic oxides for thermal spraying: problems of availability and evolution of prices. Surf Coatings Technol., 220, pp. 14-19, 2013. DOI: 10.1016/j.surfcoat.2012.04.096.spa
dcterms.referencesPateyron, B., Jets&Poudres and T&Twinner. [online]. Available at: http://www.unilim.fr/spcts.spa
dcterms.referencesASTM. Standard Test Method for Pull-Off Strength of coatings using portable adhesion, 2014, pp. 1-16. DOI: 10.1520/D4541-09E01.2.spa
dcterms.referencesKhan, N.M.T.B., High pressure and high temperature study of magnesiochromite and its geophysical implications, Thesis MSc., University of Western, Ontario, Canada, 2015.spa
dcterms.referencesGehre, P., Aneziris, C.G., Berek, H. and Parr, C., Reinmller M., Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag. J Eur Ceram Soc., 35(5), pp. 1613-1620, 2015. DOI: 10.1016/j.jeurceramsoc.2014.11.031.spa
dcterms.referencesMoritz, K., Aneziris, C.G., Hesky, D. and Gerlach, N., Magnesium aluminate spinel ceramics containing aluminum titanate for refractory applications. J Ceram Sci Technol., 5(2), pp. 125-130, 2014. DOI: 10.4416/JCST2013-00037.spa
dcterms.referencesPing, L.R., Azad, A.M. and Dung, T.W., Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater Res Bull., 36(7), pp. 1417-1430, 2001. DOI: 10.1016/S0025-5408(01)00622-5.spa
dcterms.referencesGehre, P., Aneziris, C.G., Veres, D., Parr, C., Fryda, H. and Neuroth, M., Improved spinel-containing refractory castables for slagging gasifiers. J Eur Ceram Soc., 33(6), pp. 1077-1086, 2013. DOI: 10.1016/j.jeurceramsoc.2012.11.011.spa
dcterms.referencesSton. R., Thermochemistry of North Carolina olivine in the manufacture of forsterite refractories. J Am Ceram Soc., 22, pp. 342-348, 1939.spa
dcterms.referencesTathavakar, V.D., Antony, M.P. and Jha, A.. The physical chemistry of thermal decomposition of South African chromite minerals. Metall Mater Trans B, 36(1), pp. 75-84, 2005. DOI: 10.1007/s11663-005-0008-1.spa
dcterms.referencesBorovkova, L., Koval’Skaya, K.V. and Poluboyarinov, D., Sintering and thermomechanical properties of magnesiochromite. Refract Ind Ceram., 7, pp. 715-720, 1966.spa
dcterms.referencesAtkinson, A., Bastid, P. and Liu, Q., Mechanical properties of magnesia-spinel composites. J Am Ceram Soc., 90(8), pp. 2489-96. 2007. DOI: 10.1111/j.1551-2916.2007.01733.x.spa
dcterms.referencesSergienko, V.S. and Evtushenko, V.B., The service of reactories in the slide gates of 250-ton steel teeming ladles. Refractories, 27, pp. 705-708, 1987.spa
dcterms.referencesOthman, A.G.M. and Khalil, N.M., Sintering of magnesia refractories through the formation of periclase-forsterite-spinel phases. Ceram Int., 31(8), pp. 1117-1121, 2005. DOI: 10.1016/j.ceramint.2004.11.011.spa
dcterms.referencesSoltan, A.M., Wendschuh, M., Willims, H. and Serry, M., Densification and resistance to hydration and slag attack of ilmenite-doped MgO-dolomite refractories in relation to their thermal equilibrium and microfabric. J Eur Ceram Soc., 34(8), pp. 2023-2033, 2014. DOI: 10.1016/j.jeurceramsoc.2014.01.030.spa
dcterms.referencesChaudhuri, M. and Banerjee, G., Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia. J Mater Sci., 34(23), pp. 5821-5825, 1999.spa
dcterms.referencesLampropoulou, P.G., Katagas, C.G. and Papamantellos, D.C., Composition of periclase and calcium-silicate phases in magnesia refractories derived from natural microcrystalline magnesite. J Am Ceram Soc., 88(6), pp. 1568-1574. 2005. DOI: 10.1111/j.1551-2916.2005.00263.x.spa
dcterms.referencesFaulkner, L.L., Refractories Handbook. Pittsburgh, Pennsylvania, U.S.A: n.d.spa
dcterms.referencesLi, J., Wang, Q. and Shen, N.. Magnesium ferrite is a kind of main bonding phase in magnesia refractory materials. Mater Sci Technol Conf Exhib., 2009.spa
dcterms.referencesKim, J.W., Shin, P.W., Lee, M.J. and Lee, S.J., Effect of particle size on the strength of a porous nickel aluminate fabricated by a polymer solution route. J Ceram Process Res., 7, pp. 117-121, 2006.spa
dcterms.referencesPodwórny, J., Wojsa, J. and Gerle, A., Nickel oxide in technology of basic refractory materials - the perspective of use. Mater Ceram., 66(3), pp. 331-335, 2014.spa
dcterms.referencesMelvyn-Bradley, T.H., An overview of refractory raw materials - Part 1 Alumina. Refract Eng., pp. 21-22, 2011.spa
dcterms.referencesEbadzadeh, T. and Lee, W.E., Processing-microstructure-property in mullite-cordierite composites. J Eur Ceram Soc., 2219, pp. 837-848, 1998.spa
dcterms.referencesZawrah, M.F.M. and Khalil, N.M., Effect of mullite formation on properties of refractory castables. Ceram Int., 27(6), pp. 689-694, 2001. DOI: 10.1016/S0272-8842(01)00021-9.spa
dcterms.referencesSadik, C., El-Amrani, I-E. and Albizane, A., Recent advances in silica-alumina refractory: A review. J Asian Ceram Soc., 2, pp. 83-96, 2014. DOI: 10.1016/j.jascer.2014.03.001.spa
dcterms.referencesRabinovich, M., Lightweight mullite-silica refractories. Refract Ind Ceram., 17, pp. 146-147, 1976.spa
dcterms.referencesSardy, M., Arib, A., Abbassi, K., El-Moussa, R. and Gomina, M., Elaboration and characterization of mullite refractory products from Moroccan Andalusite. New J Glas Ceram., 2, pp. 121-125, 2012.spa
dcterms.referencesDavis, J.R., Handbook of thermal spray technology. ASM Intern. USA, 2004.spa
dcterms.referencesASTM. Standard test methods for flow rate of metal powders using the hall flowmeter, pp. 213-216, 2014. DOI: 10.1520/B0213-13.2.spa
dc.identifier.doihttps://doi.org/10.15446/dyna.v85n205.65539
dc.publisher.placeBogota , Colombiaspa
dc.relation.citationeditionVol.85 No.205.(2018)spa
dc.relation.citationendpage347spa
dc.relation.citationissue205 (2018)spa
dc.relation.citationstartpage338spa
dc.relation.citationvolume85spa
dc.relation.citesCadavid, E., Vargas-Galvis, F., López-Gómez, M. E., Mesa, C. M., Vargas, F. A., Latorre, G., & Peña, G. (2018). Elaboración de recubrimientos cerámicos sobre sustratos refractarios utilizando proyección térmica oxiacetilénica a partir de materias primas no convencionales. DYNA, 85(205), 338-347. https://doi.org/10.15446/dyna.v85n205.65539
dc.relation.ispartofjournalDYNAspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalthermal sprayeng
dc.subject.proposalcoatingseng
dc.subject.proposalrefractoryeng
dc.subject.proposaladherenceeng
dc.subject.proposalIndustrial residueseng
dc.subject.proposalresidues reuseeng
dc.subject.proposalproyección térmicaspa
dc.subject.proposalrecubrimientosspa
dc.subject.proposalrefractariosspa
dc.subject.proposaladherenciaspa
dc.subject.proposalresiduos industrialesspa
dc.subject.proposalreutilización de residuosspa
dc.title.translatedElaboración de recubrimientos cerámicos sobre sustratos refractarios utilizando proyección térmica oxiacetilénica a partir de materias primas no convencionales
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record