Mostrar el registro sencillo del ítem
Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design
dc.contributor.author | LARA GONZÁLEZ, LUIS ÁNGEL | |
dc.contributor.author | RODRÍGUEZ LÓPEZ, WILMAR GUILLERMO | |
dc.contributor.author | Pineda Triana, Yaneth | |
dc.contributor.author | Peña Rodriguez, Gabriel | |
dc.contributor.author | Felipe, Hugo | |
dc.date.accessioned | 2021-11-25T13:21:16Z | |
dc.date.available | 2021-11-25T13:21:16Z | |
dc.date.issued | 2020-05-15 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1412 | |
dc.description.abstract | A full-factorial 33 experiment was used in this study to determine the optimal values of the tensile properties of three composite materials manufactured based on three polymeric resins: Derakane Momentum epoxy vinyl ester based on bisphenol-A (DM-411), polyester based on terephthalic acid (P115-A), and isophthalic polyester (P2000). Such materials were reinforced with magnetite powders at concentrations of 10, 20, and 30 wt %, and the particle sizes were classified with three sieves: #200 (46–75 μm), #325 (26–45 μm), and #500 (0–25 μm). The compounds were manufactured using the hand lay-up method at room temperature in accordance with ASTM D638-14 for M1-type specimens. A tensile test was conducted on a universal Microtest EM2/300/FR machine at a test speed of 5 ± 25 % mm/min using an Epsilon extensometer calibrated in accordance with the ASTM E83 standard at 20 ± 2 °C. The magnetite powders and compound morphology were studied by Scanning Electron Microscopy. The mechanical properties of the compounds and the optimal response found by Analysis of Variance (ANOVA) and Response Surface Methodology (RSM) are also reported. The best response to the mechanical stimuli occurs with the composite material prepared with the epoxy vinyl ester resin DM-411, a concentration of 29.4 % of magnetite (Fe3O4), a particle size of 58.5 microns, and a 200 sieve. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | TecnoLógicas | spa |
dc.relation.ispartof | TecnoLógicas | |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. | eng |
dc.source | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499 | spa |
dc.title | Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design | eng |
dc.type | Artículo de revista | spa |
dcterms.references | B. D. Agarwal and L. J. Broutman, “Analysis and performance of fiber composites Second edition.” John Wiley & Sons, 1990. | spa |
dcterms.references | V. Chaudhary, A. K. Rajput, and P. K. Bajpai, “Effect of Particulate Filler on Mechanical Properties of Polyester based Composites,” Mater. Today Proc., vol. 4, no. 9, pp. 9893–9897, 2017. https://doi.org/10.1016/j.matpr.2017.06.289 | spa |
dcterms.references | M. D. Kiran, H. K. Govindaraju, T. Jayaraju, and N. Kumar, “Review-Effect of Fillers on Mechanical Properties of Polymer Matrix Composites,” Mater. Today Proc., vol. 5, no. 10, pp. 22421–22424, 2018. https://doi.org/10.1016/j.matpr.2018.06.611 | spa |
dcterms.references | R. Khorshidi and A. Hassani, “Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite,” Mater. Des., vol. 52, , pp. 999–1010, Dec. 2013. https://doi.org/10.1016/j.matdes.2013.06.011 | spa |
dcterms.references | C. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, Oct. 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396 | spa |
dcterms.references | G. Farzi, M. Lezgy-Nazargah, A. Imani, M. Eidi, and M. Darabi, “Mechanical , thermal and microstructural properties of epoxy-OAT composites,” Constr. Build. Mater., vol. 197, pp. 12–20, Feb. 2019. https://doi.org/10.1016/j.conbuildmat.2018.11.202 | spa |
dcterms.references | T. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, no. 1, pp. 351–369, Dec. 2016. https://doi.org/10.1016/j.compositesa.2016.10.009 | spa |
dcterms.references | S. Mishra and N. G. Shimpi, “Comparison of nano CaCO 3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” J. Sci. Ind. Res., vol. 64, pp. 744–751, Oct. 2005. Available: https://pdfs.semanticscholar.org/86a3/9f08b863c2e95676b066828292a1006acc4e.pdf | spa |
dcterms.references | Y. M. De Moraes et al., “Mechanical behavior of mallow fabric reinforced polyester matrix composites,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 515–519, Oct. 2018. https://doi.org/10.1016/j.jmrt.2018.02.013 | spa |
dcterms.references | G. O. Glória et al., “Tensile strength of polyester composites reinforced with PALF,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 401–405, Oct. 2017. https://doi.org/10.1016/j.jmrt.2017.08.006 | spa |
dcterms.references | A. O. Garzón Posada, F. Fajardo Tolosa, D. A. Landínez Téllez, J. Roa Rojas, and G. Peña Rodríguez, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, pp. 57–61, Sep. 2017. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:50044807 | spa |
dcterms.references | L. A. Lara González, “Efecto De La Degradación Por Inmersión En Acido Nítrico Sobre Las Propiedades De Un Poliéster Reforzado Con Fibras De Vidrio,” Ing. Investig. y Desarro., vol. 10, no. 1, pp. 64–70, Jan. 2010. Available en: https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/918 | spa |
dcterms.references | Z. Y. Shnean, “Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide,” Diyala J. Eng. Sci., vol. 5, no. 1, pp. 147–159, 2012 Disponible en: https://www.iasj.net/iasj?func=article&aId=50197 | spa |
dcterms.references | Kutz, M., Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Elsevier, 201 | spa |
dcterms.references | C. Ruddy, E. Ahearne, and G. Byrne, “A review of magnetorheological elastomers: properties and applications,” Advanced Manufacturing Science (AMS) Research. 2012. | spa |
dcterms.references | Z. Varga, G. Filipcsei, and M. Zrínyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer, vol. 47, no. 1, pp. 227–233, Jan. 2006. https://doi.org/10.1016/j.polymer.2005.10.139 | spa |
dcterms.references | A. O. Garzón Posada, D. A. Landínez Téllez, J. Roa Rojas, and J. Ramos Barrado, “Materiales compuestos de matriz polimérica usados para el blindaje de interferencia electromagnética,” Cienc. e Ing. Neogranadina, vol. 27, no. 1, pp. 5–26, Jan. 2017. https://doi.org/10.18359/rcin.1917 | spa |
dcterms.references | L. A. Lara, D. L. Mancipe, Y. Pineda, J. J. Moreno, and G. Peña-Rodríguez, “Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders,” in Journal of Physics: Conference Series, Volume 1386, 5th International Meeting for Researchers in Materials and Plasma Technology (5th IMRMPT), Cucuta, 2019. https://doi.org/10.1088/1742-6596/1386/1/012103 | spa |
dcterms.references | O. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Eur. Polym. J., vol. 47, no. 4, pp. 542–559, Apr. 2011. https://doi.org/10.1016/j.eurpolymj.2010.11.006 | spa |
dcterms.references | F. E. Salinas Tacumá, D. A. Landinez Téllez, A. O. Garzón Posada, and J. Roa Rojas, “Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones,” TecnoLógicas, vol. 22, no. 44, pp. 81–95, Jan. 2019. https://doi.org/10.22430/22565337.999 | spa |
dcterms.references | D. C. Montgomery, “Diseño y análisis de experimentos,” 2a ed., Limusa Wiley, 2010. | spa |
dcterms.references | V. K. Vankanti and V. Ganta, “Optimization of process parameters in drilling of GFRP composite using Taguchi method,” J. Mater. Res. Technol., vol. 3, no. 1, pp. 35–41, Jan. 2014. https://doi.org/10.1016/j.jmrt.2013.10.007 | spa |
dcterms.references | I. L. Ngo, S. Jeon, and C. Byon, “Thermal conductivity of transparent and flexible polymers containing fillers: A literature review,” Int. J. Heat Mass Transf., vol. 98, pp. 219–226 Jul. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082 | spa |
dcterms.references | A. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, Feb. 2017. https://doi.org/10.1016/j.applthermaleng.2016.11.041 | spa |
dcterms.references | B. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, Apr. 2004. https://doi.org/10.1016/j.compositesa.2003.11.005 | spa |
dcterms.references | L. Á. Lara González, G. Peña-Rodríguez, and Y. P. Triana, “Effective thermal properties of a magnetite-polyester composite conformed in the presence of a constant magnetic field,” AIMS Mater. Sci., vol. 6, no. 4, pp. 549–558, Jul. 2019. https://doi.org/10.3934/matersci.2019.4.549 | spa |
dcterms.references | B. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. https://doi.org/10.3989/revmetalm.2001.v37.i2.470 | spa |
dcterms.references | B. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. Available: http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/470/477 | spa |
dcterms.references | S. D. Thoppul, J. Finegan, and R. F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 301–329, Mar. 2009. https://doi.org/10.1016/j.compscitech.2008.09.037 | spa |
dcterms.references | M. S. Boon and M. Mariatti, “Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design,” J. Magn. Magn. Mater., vol. 355, pp. 319–324, Apr. 2014. https://doi.org/10.1016/j.jmmm.2013.12.002 | spa |
dc.identifier.doi | https://doi.org/10.22430/22565337.1499 | |
dc.publisher.place | Bogota , Colombia | spa |
dc.relation.citationedition | Vol.23 No.48.(2020) | spa |
dc.relation.citationendpage | 98 | spa |
dc.relation.citationissue | 48 (2020) | spa |
dc.relation.citationstartpage | 83 | spa |
dc.relation.citationvolume | 23 | spa |
dc.relation.cites | L. Ángel Lara-González, W. Guillermo-Rodríguez, Y. Pineda-Triana, G. Peña-Rodríguez, and H. F. Salazar, “Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design”, TecnoL., vol. 23, no. 48, pp. 83-98, May 2020. | |
dc.relation.ispartofjournal | TecnoLógicas | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Tensile properties | eng |
dc.subject.proposal | Design Of Experiments | eng |
dc.subject.proposal | Magnetite | eng |
dc.subject.proposal | Composite | eng |
dc.subject.proposal | Response Surface Methodology | eng |
dc.title.translated | Optimización de las propiedades de tracción de compuestos de matriz polimérica reforzada con partículas de magnetita por diseño experimental | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |