Mostrar el registro sencillo del ítem

dc.contributor.authorLARA GONZÁLEZ, LUIS ÁNGEL
dc.contributor.authorRODRÍGUEZ LÓPEZ, WILMAR GUILLERMO
dc.contributor.authorPineda Triana, Yaneth
dc.contributor.authorPeña Rodriguez, Gabriel
dc.contributor.authorFelipe, Hugo
dc.date.accessioned2021-11-25T13:21:16Z
dc.date.available2021-11-25T13:21:16Z
dc.date.issued2020-05-15
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1412
dc.description.abstractA full-factorial 33 experiment was used in this study to determine the optimal values of the tensile properties of three composite materials manufactured based on three polymeric resins: Derakane Momentum epoxy vinyl ester based on bisphenol-A (DM-411), polyester based on terephthalic acid (P115-A), and isophthalic polyester (P2000). Such materials were reinforced with magnetite powders at concentrations of 10, 20, and 30 wt %, and the particle sizes were classified with three sieves: #200 (46–75 μm), #325 (26–45 μm), and #500 (0–25 μm). The compounds were manufactured using the hand lay-up method at room temperature in accordance with ASTM D638-14 for M1-type specimens. A tensile test was conducted on a universal Microtest EM2/300/FR machine at a test speed of 5 ± 25 % mm/min using an Epsilon extensometer calibrated in accordance with the ASTM E83 standard at 20 ± 2 °C. The magnetite powders and compound morphology were studied by Scanning Electron Microscopy. The mechanical properties of the compounds and the optimal response found by Analysis of Variance (ANOVA) and Response Surface Methodology (RSM) are also reported. The best response to the mechanical stimuli occurs with the composite material prepared with the epoxy vinyl ester resin DM-411, a concentration of 29.4 % of magnetite (Fe3O4), a particle size of 58.5 microns, and a 200 sieve.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTecnoLógicasspa
dc.relation.ispartofTecnoLógicas
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.eng
dc.sourcehttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1499spa
dc.titleOptimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Designeng
dc.typeArtículo de revistaspa
dcterms.referencesB. D. Agarwal and L. J. Broutman, “Analysis and performance of fiber composites Second edition.” John Wiley & Sons, 1990.spa
dcterms.referencesV. Chaudhary, A. K. Rajput, and P. K. Bajpai, “Effect of Particulate Filler on Mechanical Properties of Polyester based Composites,” Mater. Today Proc., vol. 4, no. 9, pp. 9893–9897, 2017. https://doi.org/10.1016/j.matpr.2017.06.289spa
dcterms.referencesM. D. Kiran, H. K. Govindaraju, T. Jayaraju, and N. Kumar, “Review-Effect of Fillers on Mechanical Properties of Polymer Matrix Composites,” Mater. Today Proc., vol. 5, no. 10, pp. 22421–22424, 2018. https://doi.org/10.1016/j.matpr.2018.06.611spa
dcterms.referencesR. Khorshidi and A. Hassani, “Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite,” Mater. Des., vol. 52, , pp. 999–1010, Dec. 2013. https://doi.org/10.1016/j.matdes.2013.06.011spa
dcterms.referencesC. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, Oct. 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396spa
dcterms.referencesG. Farzi, M. Lezgy-Nazargah, A. Imani, M. Eidi, and M. Darabi, “Mechanical , thermal and microstructural properties of epoxy-OAT composites,” Constr. Build. Mater., vol. 197, pp. 12–20, Feb. 2019. https://doi.org/10.1016/j.conbuildmat.2018.11.202spa
dcterms.referencesT. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, no. 1, pp. 351–369, Dec. 2016. https://doi.org/10.1016/j.compositesa.2016.10.009spa
dcterms.referencesS. Mishra and N. G. Shimpi, “Comparison of nano CaCO 3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” J. Sci. Ind. Res., vol. 64, pp. 744–751, Oct. 2005. Available: https://pdfs.semanticscholar.org/86a3/9f08b863c2e95676b066828292a1006acc4e.pdfspa
dcterms.referencesY. M. De Moraes et al., “Mechanical behavior of mallow fabric reinforced polyester matrix composites,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 515–519, Oct. 2018. https://doi.org/10.1016/j.jmrt.2018.02.013spa
dcterms.referencesG. O. Glória et al., “Tensile strength of polyester composites reinforced with PALF,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 401–405, Oct. 2017. https://doi.org/10.1016/j.jmrt.2017.08.006spa
dcterms.referencesA. O. Garzón Posada, F. Fajardo Tolosa, D. A. Landínez Téllez, J. Roa Rojas, and G. Peña Rodríguez, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, pp. 57–61, Sep. 2017. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:50044807spa
dcterms.referencesL. A. Lara González, “Efecto De La Degradación Por Inmersión En Acido Nítrico Sobre Las Propiedades De Un Poliéster Reforzado Con Fibras De Vidrio,” Ing. Investig. y Desarro., vol. 10, no. 1, pp. 64–70, Jan. 2010. Available en: https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/918spa
dcterms.referencesZ. Y. Shnean, “Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide,” Diyala J. Eng. Sci., vol. 5, no. 1, pp. 147–159, 2012 Disponible en: https://www.iasj.net/iasj?func=article&aId=50197spa
dcterms.referencesKutz, M., Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Elsevier, 201spa
dcterms.referencesC. Ruddy, E. Ahearne, and G. Byrne, “A review of magnetorheological elastomers: properties and applications,” Advanced Manufacturing Science (AMS) Research. 2012.spa
dcterms.referencesZ. Varga, G. Filipcsei, and M. Zrínyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer, vol. 47, no. 1, pp. 227–233, Jan. 2006. https://doi.org/10.1016/j.polymer.2005.10.139spa
dcterms.referencesA. O. Garzón Posada, D. A. Landínez Téllez, J. Roa Rojas, and J. Ramos Barrado, “Materiales compuestos de matriz polimérica usados para el blindaje de interferencia electromagnética,” Cienc. e Ing. Neogranadina, vol. 27, no. 1, pp. 5–26, Jan. 2017. https://doi.org/10.18359/rcin.1917spa
dcterms.referencesL. A. Lara, D. L. Mancipe, Y. Pineda, J. J. Moreno, and G. Peña-Rodríguez, “Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders,” in Journal of Physics: Conference Series, Volume 1386, 5th International Meeting for Researchers in Materials and Plasma Technology (5th IMRMPT), Cucuta, 2019. https://doi.org/10.1088/1742-6596/1386/1/012103spa
dcterms.referencesO. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Eur. Polym. J., vol. 47, no. 4, pp. 542–559, Apr. 2011. https://doi.org/10.1016/j.eurpolymj.2010.11.006spa
dcterms.referencesF. E. Salinas Tacumá, D. A. Landinez Téllez, A. O. Garzón Posada, and J. Roa Rojas, “Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones,” TecnoLógicas, vol. 22, no. 44, pp. 81–95, Jan. 2019. https://doi.org/10.22430/22565337.999spa
dcterms.referencesD. C. Montgomery, “Diseño y análisis de experimentos,” 2a ed., Limusa Wiley, 2010.spa
dcterms.referencesV. K. Vankanti and V. Ganta, “Optimization of process parameters in drilling of GFRP composite using Taguchi method,” J. Mater. Res. Technol., vol. 3, no. 1, pp. 35–41, Jan. 2014. https://doi.org/10.1016/j.jmrt.2013.10.007spa
dcterms.referencesI. L. Ngo, S. Jeon, and C. Byon, “Thermal conductivity of transparent and flexible polymers containing fillers: A literature review,” Int. J. Heat Mass Transf., vol. 98, pp. 219–226 Jul. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082spa
dcterms.referencesA. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, Feb. 2017. https://doi.org/10.1016/j.applthermaleng.2016.11.041spa
dcterms.referencesB. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, Apr. 2004. https://doi.org/10.1016/j.compositesa.2003.11.005spa
dcterms.referencesL. Á. Lara González, G. Peña-Rodríguez, and Y. P. Triana, “Effective thermal properties of a magnetite-polyester composite conformed in the presence of a constant magnetic field,” AIMS Mater. Sci., vol. 6, no. 4, pp. 549–558, Jul. 2019. https://doi.org/10.3934/matersci.2019.4.549spa
dcterms.referencesB. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. https://doi.org/10.3989/revmetalm.2001.v37.i2.470spa
dcterms.referencesB. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2001. Available: http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/470/477spa
dcterms.referencesS. D. Thoppul, J. Finegan, and R. F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 301–329, Mar. 2009. https://doi.org/10.1016/j.compscitech.2008.09.037spa
dcterms.referencesM. S. Boon and M. Mariatti, “Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design,” J. Magn. Magn. Mater., vol. 355, pp. 319–324, Apr. 2014. https://doi.org/10.1016/j.jmmm.2013.12.002spa
dc.identifier.doihttps://doi.org/10.22430/22565337.1499
dc.publisher.placeBogota , Colombiaspa
dc.relation.citationeditionVol.23 No.48.(2020)spa
dc.relation.citationendpage98spa
dc.relation.citationissue48 (2020)spa
dc.relation.citationstartpage83spa
dc.relation.citationvolume23spa
dc.relation.citesL. Ángel Lara-González, W. Guillermo-Rodríguez, Y. Pineda-Triana, G. Peña-Rodríguez, and H. F. Salazar, “Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design”, TecnoL., vol. 23, no. 48, pp. 83-98, May 2020.
dc.relation.ispartofjournalTecnoLógicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalTensile propertieseng
dc.subject.proposalDesign Of Experimentseng
dc.subject.proposalMagnetiteeng
dc.subject.proposalCompositeeng
dc.subject.proposalResponse Surface Methodologyeng
dc.title.translatedOptimización de las propiedades de tracción de compuestos de matriz polimérica reforzada con partículas de magnetita por diseño experimental
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem