Mostrar el registro sencillo del ítem

dc.contributor.authorRojas Suárez, Jhan Piero
dc.contributor.authorMedina Delgado, Byron
dc.contributor.authorOrjuela Abril, Martha Sofia
dc.date.accessioned2021-11-24T21:22:55Z
dc.date.available2021-11-24T21:22:55Z
dc.date.issued2020-12-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1396
dc.description.abstractThis paper analyzes the impact of the Thomson effect on the performance of thermoelectric modules. For this, different mathematical models are carried out that involves the relationship between temperature and the seebeck coefficient. These mathematical models are based on the equations that describe thermoelectric effects and are solved using finite element methods. Through linear and polynomial functions of the seebeck coefficient, the different behaviors that can occur in the Thomson coefficient and their effect on the power and efficiency of thermoelectric modules are analyzed. The results show that by not considering the Thomson effect, there is a variation of 31% and 32% in the power and efficiency of the thermoelectric module when the temperature conditions change, which makes it difficult to estimate the performance of the module. This problem can be solved by considering the Thomson effect since it predicts an approximately constant value of electrical power and efficiency for a wide temperature range. For the analyzed conditions, power and efficiency of 5.25 W and 13%, respectively, were observed. The proposed methodology allows an adequate estimation to determine the performance of the modules. Therefore, it could be implemented to search for materials that provide better thermoelectric characteristics.eng
dc.format.extent07 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series
dc.rights© Copyright 2021 IOP Publishingeng
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/1708/1/012022/metaspa
dc.titleStudy of the Thomson effect on the performance of thermoelectric modules with application to the energy recoveryeng
dc.typeArtículo de revistaspa
dcterms.referencesRowe D M 2018 Thermoelectrics Handbook (Boca Ratón: CRC Press)spa
dcterms.referencesLuo D, Wang R, Yu W and Zhou W 2020 Parametric study of a thermoelectric module used for both power generation and cooling Renew. Energy 154 542spa
dcterms.referencesOrr B, Akbarzadeh A, Mochizuki M and Singh R 2016 A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes Appl. Therm. Eng. 101 490spa
dcterms.referencesHögblom O and Andersson R 2016 A simulation framework for prediction of thermoelectric generator system performance Appl. Energy 180 472spa
dcterms.referencesZhang Y, Wang X, Cleary M, Schoensee L, Kempf N and Richardson J 2016 High-performance nanostructured thermoelectric generators for micro combined heat and power systems Appl. Therm. Eng. 96 83spa
dcterms.referencesWu S, Zhang H and Ni M 2016 Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator Energy 112 520spa
dcterms.referencesRezania A, Rosendahl L A and Yin H 2014 Parametric optimization of thermoelectric elements footprint for maximum power generation J. Power Sources 255 151spa
dcterms.referencesIbrahim A, Rahnamayan S, Vargas Martin M and Yilbas B 2014 Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics Energy 77 305spa
dcterms.referencesKim T Y, Negash A and Cho G 2017 Direct contact thermoelectric generator (DCTEG): A concept for removing the contact resistance between thermoelectric modules and heat source Energy Convers. Manag. 142 20spa
dcterms.referencesChen W-H, Huang S-R, Wang X-D, Wu P-H and Lin Y-L 2017 Performance of a thermoelectric generator intensified by temperature oscillation Energy 133 257spa
dcterms.referencesDresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J-P and Gogna P 2007 New Directions for Low-Dimensional Thermoelectric Materials Adv. Mater. 19 1043spa
dcterms.referencesWang S, Yang B and Lu C 2014 Influences of Thomson effect and additional thermal resistance on the performance of thermoelectric module Journal Tianjin Univ. Sci. Technol. 47 15spa
dcterms.referencesYamashita O 2008 Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency Energy Convers. Manag. 49 3163spa
dcterms.referencesKim H S, Liu W and Ren Z 2015 Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat J. Appl. Phys. 118 115103spa
dcterms.referencesCheng F Q, Hong Y J and Zhu C 2013 Thermoelectric Physical model with Thomson effect and experiment comparison Appl. Mech. Mater. 437 1077spa
dcterms.referencesAntonova E E and Looman D C 2005 24th International Conference on Thermoelectric (USA: IEEE) Finite elements for thermoelectric device analysis in ANSYSspa
dcterms.referencesManzanares J A, Jokinen M and Cervera J 2015 On the different formalisms for the transport equations of thermoelectricity: A review J. Non-Equilibrium Thermodyn. 40 1spa
dcterms.referencesLandau L D, Lifshitz E M and King A L 1961 Electrodynamics of continuous media Am. J. Phys. 29 647spa
dcterms.referencesLee H 2013 The Thomson effect and the ideal equation on thermoelectric coolers Energy 56 61spa
dcterms.referencesMeng F K, Chen L G and Sun F R 2010 Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator J. Energy Inst. 83 108spa
dcterms.referencesFeng Y, Chen L, Meng F and Sun F 2018 Thermodynamic analysis of TEG-TEC device including influence of Thomson effect J. Non-Equilibrium Thermodyn. 43 75spa
dcterms.referencesSandoz-Rosado E J, Weinstein S J and Stevens R J 2013 On the Thomson effect in thermoelectric power devices Int. J. Therm. Sci. 66 1spa
dc.identifier.doihttps://doi.org/10.1088/1742-6596/1708/1/012022
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.1708 No.1.(2020)spa
dc.relation.citationendpage7spa
dc.relation.citationissue1(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume1708spa
dc.relation.citesSuárez, J. R., Delgado, B. M., & Abril, M. O. (2020, December). Study of the Thomson effect on the performance of thermoelectric modules with application to the energy recovery. In Journal of Physics: Conference Series (Vol. 1708, No. 1, p. 012022). IOP Publishing.
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem