Mostrar el registro sencillo del ítem

dc.contributor.authorMendoza-Casseres, Daniel
dc.contributor.authorValencia, Guillermo Eliecer
dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.date.accessioned2021-11-23T21:06:55Z
dc.date.available2021-11-23T21:06:55Z
dc.date.issued2018-08-18
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1317
dc.description.abstractCurrently, CO2 capture and storage is a method approved by many countries to combat CO2 emissions, taking power and oil plants as study areas. According to many climate agreements made in the last decade, developed countries have implemented capture and storage projects in several countries, resulting in a reduction of CO2 emissions and being a key player in reducing global temperatures by 2050 using protocols, research centres and government support for future capture projects. The study conducted research on the countries with the largest number of publications on CO2 capture, considering the actions taken by different governments on issues related to politics, economics, society and technology with the help of a PEST analysis.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences
dc.rights© 2018 Daniel Mendoza Casseres, Guillermo Eliecer Valencia and Javier Cardenas Gutierrez. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces61-64-2018/87318.htmlspa
dc.titlePEST study of CO2 capture strategy from 2007 to 2018eng
dc.typeArtículo de revistaspa
dcterms.referencesE. I. Koytsoumpa, C. Bergins and E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132 (2018), 3– 16. https://doi.org/10.1016/j.supflu.2017.07.029spa
dcterms.referencesA. Dey and A. Aroonwilas, CO2 absorption into MEA-AMP blend: Mass transfer and absorber height index, Energy Procedia, 1 (2009), no. 1, 211– 215. https://doi.org/10.1016/j.egypro.2009.01.030spa
dcterms.referencesH. Machida, R. Ando, T. Esaki, T. Yamaguchi, H. Horizoe, A. Kishimoto, K. Akiyama, M. Nishimura, Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent, Int. J. Greenh. Gas Control, 75 (2018), 1–7. https://doi.org/10.1016/j.ijggc.2018.05.010spa
dcterms.referencesT. Wang, X. Song, Q. Luo, X. Yang, S. Chong, Jie Zhang, Min Ji, Acidbase bifunctional catalyst: Carboxyl ionic liquid immobilized on MIL-101- NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions, Microporous Mesoporous Mater., 267 (2018), 84–92. https://doi.org/10.1016/j.micromeso.2018.03.011spa
dcterms.referencesP. C. Sahoo, M. Kumar, A. Singh, M. P. Singh, S. K. Puri and S. S. V Ramakumar, Accelerated CO2 capture in hybrid solvent using coimmobilized enzyme/complex on a hetero-functionalized support, J. CO2 Util., 21 (2017), 77–81. https://doi.org/10.1016/j.jcou.2017.06.019spa
dcterms.referencesM. Irani, A. T. Jacobson, K. A. M. Gasem and M. Fan, Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture, Energy, 157 (2018), 1–9. https://doi.org/10.1016/j.energy.2018.05.141spa
dcterms.referencesA. Rolfe, Y. Huang, M. Haaf, S. Rezvani, D. MclIveen-Wright and N. J. Hewitt, Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation, Appl. Energy, 222 (2018), 169–179. https://doi.org/10.1016/j.apenergy.2018.03.160spa
dcterms.referencesA. Rolfe, Y. Huang, M. Haaf, S. Rezvani, A. Dave and N. J. Hewitt, Techno-economic and Environmental Analysis of Calcium Carbonate Looping for CO2 Capture from a Pulverised Coal-Fired Power Plant, Energy Procedia, 142 (2017), 3447–3453. https://doi.org/10.1016/j.egypro.2017.12.228spa
dcterms.referencesK. Zakuciová, V. Kočí, K. Ciahotný, A. Carvalho, J. Štefanica and J. Smutná, Life Cycle Assessment of calcium carbonate loop CO2 capture technology for brown coal power plant unit of the Czech Republic, in 28 European Symposium on Computer Aided Process Engineering, Vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov and T. B. T.-C. A. C. E. Wallek, Eds. Elsevier, 2018, pp. 253–258. https://doi.org/10.1016/b978-0-444-64235-6.50045-0spa
dcterms.referencesY. Zhao, B. Jin, Z. Deng, Y. Huang, X. Luo and Z. Liang, Thermodynamic analysis of a new chemical looping process for syngas production with simultaneous CO2 capture and utilization, Energy Convers. Manag., 171 (2018), 1685–1696. https://doi.org/10.1016/j.enconman.2018.06.101spa
dcterms.referencesL. Dubois, S. Laribi, S. Mouhoubi, G. De Weireld and D. Thomas, Study of the Post-combustion CO2 Capture Applied to Conventional and Partial Oxyfuel Cement Plants, Energy Procedia, 114 (2017), 6181–6196. https://doi.org/10.1016/j.egypro.2017.03.1756spa
dcterms.referencesA. Rolfe, Y. Huang, M. Haaf, A. Pita, S. Rezvani, A. Dave, N.J. Hewitt, Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants, Int. J. Greenh. Gas Control, 75 (2018), 85–97. https://doi.org/10.1016/j.ijggc.2018.05.020spa
dcterms.referencesF. Wu, M. D. Argyle, P. A. Dellenback and M. Fan, Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review, Prog. Energy Combust. Sci., 67 (2018), 188–205. https://doi.org/10.1016/j.pecs.2018.01.004spa
dcterms.referencesB. Ghorbani, M. Mehrpooya and H. Ghasemzadeh, Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process, Energy, 158 (2018), 1105–1119. https://doi.org/10.1016/j.energy.2018.06.099spa
dcterms.referencesY. Ma, J. Gao, Y. Wang, J. Hu and P. Cui, Ionic liquid-based CO2 capture in power plants for low carbon emissions, Int. J. Greenh. Gas Control, 75 (2018), 134–139. https://doi.org/10.1016/j.ijggc.2018.05.025spa
dcterms.referencesQ. Lai, Z. Diao, L. Kong, H. Adidharma and M. Fan, Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture, Appl. Energy, 223 (2018), 293–301. https://doi.org/10.1016/j.apenergy.2018.04.059spa
dcterms.referencesC. Chen, S. Zhang, K. H. Row and W.-S. Ahn, Amine–silica composites for CO2 capture: A short review, J. Energy Chem., 26 (2017), no. 5, 868–880. https://doi.org/10.1016/j.jechem.2017.07.001spa
dcterms.referencesJ. Kremer, A. Galloy, J. Ströhle and B. Epple, Continuous CO2 Capture in a 1-MWth Carbonate Looping Pilot Plant, Chem. Eng. Technol., 36 (2013), no. 9, 1518–1524. https://doi.org/10.1002/ceat.201300084spa
dcterms.referencesM. Benitez-Guerrero, J. M. Valverde, A. Perejon, P. E. Sanchez-Jimenez and L. A. Perez-Maqueda, Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process, Chem. Eng. J., 346 (2018), 549–556. https://doi.org/10.1016/j.cej.2018.03.146spa
dcterms.referencesH. Jin, P. Liu and Z. Li, Energy-efficient process intensification for postcombustion CO2 capture: A modeling approach, Energy, 158 (2018), 471– 483. https://doi.org/10.1016/j.energy.2018.06.045spa
dcterms.referencesM. E. Boot-Handford, J. Abanades, E. Anthony, M. Blunt, S. Brandani, N. Dowell, J. Fernández, Maria-Chiara Ferrari, R. Gross, J. Hallett, R. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. Porter, M. Pourkashanian, G. Rochelle, N. Shah, J. Yaoa and P. Fennell, Carbon capture and storage update, Energy Environ. Sci., 7 (2014), no. 1, 130–189. https://doi.org/10.1039/c3ee42350fspa
dcterms.referencesD. Y. C. Leung, G. Caramanna and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev., 39 (2014), 426–44. https://doi.org/10.1016/j.rser.2014.07.093spa
dcterms.referencesN. MacDowell, Nick Florin, Antoine Buchard, Jason Hallett, Amparo Galindo, George Jackson, Claire S. Adjiman, Charlotte K. Williams, Nilay Shah, Paul Fennell, An overview of CO2 capture technologies, Energy Environ. Sci., 3 (2010), no. 11, 1645–1669. https://doi.org/10.1039/c004106hspa
dcterms.referencesInternational Energy Agency, Technology Roadmap: Carbon Capture and Storage, 1st ed. Paris, France: International Energy Agency, 2013.spa
dc.identifier.doihttps://doi.org/10.12988/ces.2018.87318
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol.11 No.64.(2018)spa
dc.relation.citationendpage3186spa
dc.relation.citationissue64(2018)spa
dc.relation.citationstartpage3177spa
dc.relation.citationvolume11spa
dc.relation.citesCasseres, D. M., Valencia, G. E., & Gutiérrez, J. C. (2018). PEST Study of CO2 Capture Strategy from 2007 to 2018.
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalCO2 captureeng
dc.subject.proposalCO2 emissionseng
dc.subject.proposalCACeng
dc.subject.proposalPEST analysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem