dc.contributor.author | Mendoza-Casseres, Daniel | |
dc.contributor.author | Valencia, Guillermo Eliecer | |
dc.contributor.author | Cárdenas-Gutiérrez, Javier Alfonso | |
dc.date.accessioned | 2021-11-23T21:06:55Z | |
dc.date.available | 2021-11-23T21:06:55Z | |
dc.date.issued | 2018-08-18 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1317 | |
dc.description.abstract | Currently, CO2 capture and storage is a method approved by many countries to
combat CO2 emissions, taking power and oil plants as study areas. According to
many climate agreements made in the last decade, developed countries have
implemented capture and storage projects in several countries, resulting in a
reduction of CO2 emissions and being a key player in reducing global
temperatures by 2050 using protocols, research centres and government support
for future capture projects. The study conducted research on the countries with the
largest number of publications on CO2 capture, considering the actions taken by
different governments on issues related to politics, economics, society and
technology with the help of a PEST analysis. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences | |
dc.rights | © 2018 Daniel Mendoza Casseres, Guillermo Eliecer Valencia and Javier Cardenas Gutierrez. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2018/ces61-64-2018/87318.html | spa |
dc.title | PEST study of CO2 capture strategy from 2007 to 2018 | eng |
dc.type | Artículo de revista | spa |
dcterms.references | E. I. Koytsoumpa, C. Bergins and E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132 (2018), 3– 16. https://doi.org/10.1016/j.supflu.2017.07.029 | spa |
dcterms.references | A. Dey and A. Aroonwilas, CO2 absorption into MEA-AMP blend: Mass transfer and absorber height index, Energy Procedia, 1 (2009), no. 1, 211– 215. https://doi.org/10.1016/j.egypro.2009.01.030 | spa |
dcterms.references | H. Machida, R. Ando, T. Esaki, T. Yamaguchi, H. Horizoe, A. Kishimoto, K. Akiyama, M. Nishimura, Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent, Int. J. Greenh. Gas Control, 75 (2018), 1–7. https://doi.org/10.1016/j.ijggc.2018.05.010 | spa |
dcterms.references | T. Wang, X. Song, Q. Luo, X. Yang, S. Chong, Jie Zhang, Min Ji, Acidbase bifunctional catalyst: Carboxyl ionic liquid immobilized on MIL-101- NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions, Microporous Mesoporous Mater., 267 (2018), 84–92. https://doi.org/10.1016/j.micromeso.2018.03.011 | spa |
dcterms.references | P. C. Sahoo, M. Kumar, A. Singh, M. P. Singh, S. K. Puri and S. S. V Ramakumar, Accelerated CO2 capture in hybrid solvent using coimmobilized enzyme/complex on a hetero-functionalized support, J. CO2 Util., 21 (2017), 77–81. https://doi.org/10.1016/j.jcou.2017.06.019 | spa |
dcterms.references | M. Irani, A. T. Jacobson, K. A. M. Gasem and M. Fan, Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture, Energy, 157 (2018), 1–9. https://doi.org/10.1016/j.energy.2018.05.141 | spa |
dcterms.references | A. Rolfe, Y. Huang, M. Haaf, S. Rezvani, D. MclIveen-Wright and N. J. Hewitt, Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation, Appl. Energy, 222 (2018), 169–179. https://doi.org/10.1016/j.apenergy.2018.03.160 | spa |
dcterms.references | A. Rolfe, Y. Huang, M. Haaf, S. Rezvani, A. Dave and N. J. Hewitt, Techno-economic and Environmental Analysis of Calcium Carbonate Looping for CO2 Capture from a Pulverised Coal-Fired Power Plant, Energy Procedia, 142 (2017), 3447–3453. https://doi.org/10.1016/j.egypro.2017.12.228 | spa |
dcterms.references | K. Zakuciová, V. Kočí, K. Ciahotný, A. Carvalho, J. Štefanica and J. Smutná, Life Cycle Assessment of calcium carbonate loop CO2 capture technology for brown coal power plant unit of the Czech Republic, in 28 European Symposium on Computer Aided Process Engineering, Vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov and T. B. T.-C. A. C. E. Wallek, Eds. Elsevier, 2018, pp. 253–258. https://doi.org/10.1016/b978-0-444-64235-6.50045-0 | spa |
dcterms.references | Y. Zhao, B. Jin, Z. Deng, Y. Huang, X. Luo and Z. Liang, Thermodynamic analysis of a new chemical looping process for syngas production with simultaneous CO2 capture and utilization, Energy Convers. Manag., 171 (2018), 1685–1696. https://doi.org/10.1016/j.enconman.2018.06.101 | spa |
dcterms.references | L. Dubois, S. Laribi, S. Mouhoubi, G. De Weireld and D. Thomas, Study of the Post-combustion CO2 Capture Applied to Conventional and Partial Oxyfuel Cement Plants, Energy Procedia, 114 (2017), 6181–6196. https://doi.org/10.1016/j.egypro.2017.03.1756 | spa |
dcterms.references | A. Rolfe, Y. Huang, M. Haaf, A. Pita, S. Rezvani, A. Dave, N.J. Hewitt, Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants, Int. J. Greenh. Gas Control, 75 (2018), 85–97. https://doi.org/10.1016/j.ijggc.2018.05.020 | spa |
dcterms.references | F. Wu, M. D. Argyle, P. A. Dellenback and M. Fan, Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review, Prog. Energy Combust. Sci., 67 (2018), 188–205. https://doi.org/10.1016/j.pecs.2018.01.004 | spa |
dcterms.references | B. Ghorbani, M. Mehrpooya and H. Ghasemzadeh, Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process, Energy, 158 (2018), 1105–1119. https://doi.org/10.1016/j.energy.2018.06.099 | spa |
dcterms.references | Y. Ma, J. Gao, Y. Wang, J. Hu and P. Cui, Ionic liquid-based CO2 capture in power plants for low carbon emissions, Int. J. Greenh. Gas Control, 75 (2018), 134–139. https://doi.org/10.1016/j.ijggc.2018.05.025 | spa |
dcterms.references | Q. Lai, Z. Diao, L. Kong, H. Adidharma and M. Fan, Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture, Appl. Energy, 223 (2018), 293–301. https://doi.org/10.1016/j.apenergy.2018.04.059 | spa |
dcterms.references | C. Chen, S. Zhang, K. H. Row and W.-S. Ahn, Amine–silica composites for CO2 capture: A short review, J. Energy Chem., 26 (2017), no. 5, 868–880. https://doi.org/10.1016/j.jechem.2017.07.001 | spa |
dcterms.references | J. Kremer, A. Galloy, J. Ströhle and B. Epple, Continuous CO2 Capture in a 1-MWth Carbonate Looping Pilot Plant, Chem. Eng. Technol., 36 (2013), no. 9, 1518–1524. https://doi.org/10.1002/ceat.201300084 | spa |
dcterms.references | M. Benitez-Guerrero, J. M. Valverde, A. Perejon, P. E. Sanchez-Jimenez and L. A. Perez-Maqueda, Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process, Chem. Eng. J., 346 (2018), 549–556. https://doi.org/10.1016/j.cej.2018.03.146 | spa |
dcterms.references | H. Jin, P. Liu and Z. Li, Energy-efficient process intensification for postcombustion CO2 capture: A modeling approach, Energy, 158 (2018), 471– 483. https://doi.org/10.1016/j.energy.2018.06.045 | spa |
dcterms.references | M. E. Boot-Handford, J. Abanades, E. Anthony, M. Blunt, S. Brandani, N. Dowell, J. Fernández, Maria-Chiara Ferrari, R. Gross, J. Hallett, R. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. Porter, M. Pourkashanian, G. Rochelle, N. Shah, J. Yaoa and P. Fennell, Carbon capture and storage update, Energy Environ. Sci., 7 (2014), no. 1, 130–189. https://doi.org/10.1039/c3ee42350f | spa |
dcterms.references | D. Y. C. Leung, G. Caramanna and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev., 39 (2014), 426–44. https://doi.org/10.1016/j.rser.2014.07.093 | spa |
dcterms.references | N. MacDowell, Nick Florin, Antoine Buchard, Jason Hallett, Amparo Galindo, George Jackson, Claire S. Adjiman, Charlotte K. Williams, Nilay Shah, Paul Fennell, An overview of CO2 capture technologies, Energy Environ. Sci., 3 (2010), no. 11, 1645–1669. https://doi.org/10.1039/c004106h | spa |
dcterms.references | International Energy Agency, Technology Roadmap: Carbon Capture and Storage, 1st ed. Paris, France: International Energy Agency, 2013. | spa |
dc.identifier.doi | https://doi.org/10.12988/ces.2018.87318 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol.11 No.64.(2018) | spa |
dc.relation.citationendpage | 3186 | spa |
dc.relation.citationissue | 64(2018) | spa |
dc.relation.citationstartpage | 3177 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Casseres, D. M., Valencia, G. E., & Gutiérrez, J. C. (2018). PEST Study of CO2 Capture Strategy from 2007 to 2018. | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | CO2 capture | eng |
dc.subject.proposal | CO2 emissions | eng |
dc.subject.proposal | CAC | eng |
dc.subject.proposal | PEST analysis | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |