Mostrar el registro sencillo del ítem

dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.contributor.authorValencia Ochoa, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-11-21T20:27:22Z
dc.date.available2021-11-21T20:27:22Z
dc.date.issued2020-06-20
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1209
dc.description.abstractThe present study aims to use the analysis of CFD in a centrifugal dredge pump, to predict by mathematical correlations the effect that changes in the main variables of the dredging process would have on the behavior and efficiency of the pump. The OpenFOAM® open source software is used for the development of the study, through which a series of operating conditions that the dredging pump experiences in its operation were reproduced. The information collected from the output variables in the pump allowed us through statistical analysis, the development of mathematical correlations that allow us to directly identify the relationships between the process variables and their influence on the pump behavior (suction pressure, discharge pressure, total dynamic head, NPSHr and efficiency). The results obtained indicate that the simulation process allows a high prediction to be obtained with respect to the actual pump conditions (error below 4%). Mathematical correlations demonstrated efficiency for the operating range of work from 83% to 64%. Additionally, the NPSHr analysis allows defining operating limits that avoid adverse effects such as cavitation.eng
dc.format.extent07 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Engineering Science and Technology Reviewspa
dc.relation.ispartofJournal of Engineering Science and Technology Review
dc.rights© 2008 - 2021 JESTReng
dc.sourcehttp://www.jestr.org/index.php?option=com_content&view=article&id=71&Itemid=118spa
dc.titleParametric analysis CFD of the hydraulic performance of a centrifugal pump with applications to the dredging industryeng
dc.typeArtículo de revistaspa
dcterms.referencesKassanos, I., Chrysovergis, M., Anagnostopoulos, J., Charalampopoulos, G., Rokas, S., Lekanidis, S., Kontominas, I., Papantonis, D. Numerical Optimization of a Centrifugal Pump Impeller with Splitter Blades Running in Reverse Mode. International Review of Mechanical Engineering (IREME), 10 (4), 2016, 215, ISSN 1970-8742.spa
dcterms.referencesWilson, K. C., Addie, G. R., Sellgren, A., Clift, R. Slurry Transport Using Centrifugal Pumps, Springer (2000). ISBN 9780387232621.spa
dcterms.referencesStefanizzi, M., Torresi, M., Fornarelli, F., Fortunato, B., Camporeale, S. M. Performance prediction model of multistage centrifugal Pumps used as Turbines with Two-Phase Flow. Energy Procedia, 148, 2018, 408–415, ISSN 1876-6102.spa
dcterms.referencesLorusso, M., Capurso, T., Torresi, M., Fortunato, B., Fornarelli, F., Camporeale, S. M., Monteriso, R. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia, 126, 2017, 778–785, ISSN 1876-6102spa
dcterms.referencesCucit, V., Burlon, F., Fenu, G., Furlanetto, R., Pellegrino, F. A., Simonato, M. A control system for preventing cavitation of centrifugal pumps. Energy Procedia, 148, 2018, 242–249, ISSN 1876-6102.spa
dcterms.referencesCheng, X., Li, R. Parameter equation study for screw centrifugal pump. Procedia Engineering, 31, 2012, 914–921, ISSN 1877-7058spa
dcterms.referencesSkrzypacz, J., Bieganowski, M. The influence of micro grooves on the parameters of the centrifugal pump impeller. International Journal of Mechanical Sciences, 144, 2018, 827–835, ISSN 0020- 7403.spa
dcterms.referencesZhu, X., Li, G., Jiang, W., Fu, L. Experimental and numerical investigation on application of half vane diffusers for centrifugal pump. International Communications in Heat and Mass Transfer, 79, 2016, 114–127, ISSN 0735-1933.spa
dcterms.referencesYe, Y., Zhu, X., Lai, F., Li, G. Application of the semi-analytical cavitation model to flows in a centrifugal pump. International Communications in Heat and Mass Transfer, 86, 2017, 92–100, ISSN 0735-1933.spa
dcterms.referencesCapurso, T., Bergamini, L., Torresi, M. Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps. Nuclear Engineering and Design, 341, 2019, 155–166, ISSN 0029-5493.spa
dcterms.referencesYu, R., Liu, J. Failure analysis of centrifugal pump impeller. Engineering Failure Analysis, 92, 2018, 343–349, ISSN 1350-6307.spa
dcterms.referencesChalghoum, I., Elaoud, S., Akrout, M., Taieb, E. H. Transient behavior of a centrifugal pump during starting period. Applied Acoustics, 109, 2016, 82–89, ISSN 0003-682X.spa
dcterms.referencesMiedema, S. A. A head loss model for slurry transport in the heterogeneous regime. Ocean Engineering, 106, 2015, 360–370, ISSN 00298018.spa
dcterms.referencesDerakhshan, S., Nourbakhsh, A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal and Fluid Science, 32 (8), 2008, 1620–1627, ISSN 08941777.spa
dcterms.referencesRoco, M. C., Addie, G. R., Visintainer, R. Study on casing performances in centrifugal slurry pumps. Particulate Science and Technology, 3 (1–2), 2007, 65–88, ISSN 15480046.spa
dcterms.referencesYoo, I. S., Park, M. R., Chung, M. K. Improved momentum exchange theory for incompressible regenerative turbomachines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219 (7), 2005, 567–581, ISSN 09576509.spa
dcterms.referencesCasari, N., Fadiga, E., Pinelli, M., Randi, S., Suman, A. Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System. Energies, 12 (11), 2019, 2186, ISSN 1996-1073.spa
dcterms.referencesRagoth Singh, R., Nataraj, M., Surendar, S., Siva, M. Investigation of a centrifugal pump impeller vane profile using CFD. International Review on Modelling and Simulations, 6 (2), 2013, 1327–1333, ISSN 25331701.spa
dcterms.referencesAl Asemi, H., S. M. A., A., Zahari, R., Aziz, F. A., Ahmad, K. A. Application of Computational Fluid Dynamics in Piping Distribution System and Special Focus on the Arabian Peninsula: a Review. International Review of Mechanical Engineering (IREME), 13 (1), 2019, 1, ISSN 2532-5655.spa
dcterms.referencesMaluta, F., Paglianti, A., Montante, G. RANS-based predictions of dense solid–liquid suspensions in turbulent stirred tanks. Chemical Engineering Research and Design, 147, 2019, 470–482, ISSN 02638762.spa
dcterms.referencesHeng, J., New, T. H., Wilson, P. A. Application of an Eulerian granular numerical model to an industrial scale pneumatic conveying pipeline. Advanced Powder Technology, 30 (2), 2019, 240–256, ISSN 09218831.spa
dcterms.referencesTarodiya, R., Gandhi, B. K. Numerical simulation of a centrifugal slurry pump handling solid-liquid mixture: Effect of solids on flow field and performance. Advanced Powder Technology, 30 (10), 2019, 2225–2239, ISSN 09218831.spa
dcterms.referencesQuail, F. J., Scanlon, T., Baumgartner, A. Design study of a regenerative pump using one-dimensional and three-dimensional numerical techniques. European Journal of Mechanics, B/Fluids, 31 (1), 2012, 181–187, ISSN 09977546.spa
dcterms.referencesBadami, M., Mura, M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications. Energy Conversion and Management, 55, 2012, 93–100, ISSN 01968904.spa
dcterms.referencesYousefi, H., Noorollahi, Y., Tahani, M., Fahimi, R., Saremian, S. Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustainable Energy Technologies and Assessments, 34, 2019, 16–26, ISSN 22131388.spa
dcterms.referencesHofstra, C. F., Rhee, C. van, Miedema, S. A., Talmon, A. M. On The Particle Trajectories In Dredge Pump Impellers. 14th International Conference Transport & Sedimentation Of Solid Particles, Saint Petersburg, Russia, 2008.spa
dcterms.referencesGrabow, G. Two-phase flow in centrifugal pumps for hydraulic solids transport. Engineering Research, 70 (1), 2005, 1–12, ISSN 00157899.spa
dcterms.referencesZhao, W., Zhao, G. Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump. Journal of Mechanical Science and Technology, 32 (1), 2018, 167–176, ISSN 1738-494X.spa
dcterms.referencesLi, Y., Zhu, Z., He, W., He, Z. Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance. Chinese Journal of Mechanical Engineering, 25 (6), 2012, 1184–1189, ISSN 1000-9345.spa
dc.identifier.doihttp://dx.doi.org/10.25103/jestr.133.02
dc.publisher.placeGreciaspa
dc.relation.citationeditionVol.13 No.3.(2020)spa
dc.relation.citationendpage14spa
dc.relation.citationissue3(2020)spa
dc.relation.citationstartpage8spa
dc.relation.citationvolume13spa
dc.relation.citesGutierrez, J. C., Ochoa, G. V., & Forero, J. D. (2020). Parametric analysis CFD of the hydraulic performance of a centrifugal pump with applications to the dredging industry. Journal of Engineering Science and Technology Review, 13(3), 8-14.
dc.relation.ispartofjournalJournal of Engineering Science and Technology Reviewspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalCentrifugal pumpseng
dc.subject.proposalCFDeng
dc.subject.proposalCorrelationeng
dc.subject.proposalDredgingeng
dc.subject.proposalParametriceng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem