Mostrar el registro sencillo del ítem

dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.contributor.authorDuarte Forero, Jorge
dc.contributor.authorValencia Ochoa, Guillermo Eliecer
dc.date.accessioned2021-11-19T22:00:51Z
dc.date.available2021-11-19T22:00:51Z
dc.date.issued2020-09
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1169
dc.description.abstractThe theoretical analysis of the thermodynamic cycles and the physical processes that occur in a cyclical way has improved the knowledge needed to improve the energy efficiency and the performance of the energy transfer systems in science and engineering. Power generation, cooling, and heating processes are improved by means of numerical methods to study the thermodynamic changes of flows involved in the energy transfer between mechanical devices coupled in industrial processes. Taking into account the growing concern in the recent years for the developing of the new power production schemes related to the steam or gas flows applied to non-conventional sources like solar radiation, residual heat production, wind energy, and, biomass combustion, this paper proposes a thermodynamic analysis of supercritical carbon dioxide (S – CO2) Brayton cycle considering new alternatives of power generation in order to satisfy the elevated energy demand with the improvement of the physical parameters simulated in the thermodynamic model. The first and the second laws of thermodynamics are computed in the mathematical algorithm applied in order to solve the steady-state of the flow pressure and the heat transferred during the power production under different working conditions. The simple and partial cooling configuration is studied in this research considering the less complex features of the supercritical carbon dioxide cycle with the aim to validate the prediction of the mathematical algorithm applied with MATLAB software and verify the improvement of the thermodynamic configuration proposed in this research. A good agreement has been reached during the numerical validation of the model with an error rate of less than 2 percent between the numerical data analyzed with a computed model.eng
dc.format.extent09 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal on Energy Conversionspa
dc.relation.ispartofInternational Journal on Energy Conversion
dc.rights© 2020 Praise Worthy Prize S.r.l. - All rights reservedeng
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=irecon&page=article&op=view&path[]=24760spa
dc.titleComparative analysis of supercritical CO2 Brayton cycles with simple and partial cooling configurationseng
dc.typeArtículo de revistaspa
dcterms.referencesGhazi, M., Essadiqi, E., Mada, M., Faqir, M., Benabdellah, A., Seawater Desalination Pilot Plant: Optimal Design and Sizing of Solar Driven-Four Effect Evaporators Combined with Heat Integration Analysis, (2017) International Review on Modelling and Simulations (IREMOS), 10 (3), pp. 177-192.spa
dcterms.referencesOrozco, T., Herrera, M., Duarte Forero, J., CFD Study of Heat Exchangers Applied in Brayton Cycles: a Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid, (2019) International Review on Modelling and Simulations (IREMOS), 12 (2), pp. 72-82.spa
dcterms.referencesG. Valencia, J. Núñez, and J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy, vol. 21, no. 7, 2019.spa
dcterms.referencesM. Ghazi, P. Ahmadi, A. F. Sotoodeh, and A. Taherkhani, Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm, Energy Conversion and Management, vol. 58, pp. 149–156, 2012.spa
dcterms.referencesJ. Soundhar, M. T. Durai, R. Vijay, and M. Siva, Parametric Study and Analysis of Varying the Condenser Pressure in Thermal Power Plant, International Journal for Research in Applied Science & Engineering, vol. 3, no. XII, pp. 181–189, 2015.spa
dcterms.referencesC. Ogbonnaya, A. Turan, and C. Abeykoon, Energy and exergy efficiencies enhancement analysis of integrated photovoltaic-based energy systems, Journal of Energy Storage, vol. 26, Dec. 2019.spa
dcterms.referencesC. Wantha, Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems, Applied Thermal Engineering, Jul. 2019.spa
dcterms.referencesA. M. González, M. Vaz, and P. S. B. Zdanski, A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers, Applied Thermal Engineering, vol. 148, pp. 363–370, Feb. 2019.spa
dcterms.referencesY. Ma, X. Zhang, M. Liu, J. Yan, and J. Liu, Proposal and assessment of a novel supercritical CO 2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications, Energy, vol. 148, 2018.spa
dcterms.referencesX. Li, N. Wang, L. Wang, Y. Yang, and F. Maréchal, Identification of optimal operating strategy of direct air - cooling condenser for Rankie cycle based power plants, Applied Energy, vol. 209, pp. 153–166, 2018.spa
dcterms.referencesG. Khankari, J. Munda, and S. Karmakar, Power Generation from Condenser Waste Heat in Coal-fired Thermal Power Plant Using Kalina Cycle, Energy Procedia, vol. 90, pp. 613–624, 2016.spa
dcterms.referencesK. Cheng, J. Zhou, H. Zhang, X. Huai, and J. Guo, Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle, Applied Thermal Engineering, vol. 171, p. 115116, May 2020.spa
dcterms.referencesY. Liang, X. Bian, W. Qian, M. Pan, Z. Ban, and Z. Yu, Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine, Energy Conversion and Management, vol. 197, p. 111845, Oct. 2019.spa
dcterms.referencesİ. Altın, A. Bilgin, and İ. Sezer, Theoretical investigation on combustion characteristics of ethanol-fueled dual-plug SI engine, Fuel, vol. 257, p. 116068, Dec. 2019.spa
dcterms.referencesA. Menaa, M. S. Lounici, F. Amrouche, K. Loubar, and M. Kessal, CFD analysis of hydrogen injection pressure and valve profile law effects on backfire and pre-ignition phenomena in hydrogen-diesel dual fuel engine, International Journal of Hydrogen Energy, vol. 44, no. 18, pp. 9408–9422, 2019.spa
dcterms.referencesF. Z. Aklouche, K. Loubar, A. Bentebbiche, S. Awad, and M. Tazerout, Predictive model of the diesel engine operating in dual-fuel mode fuelled with different gaseous fuels, Fuel, vol. 220, no. February, pp. 599–606, 2018.spa
dcterms.referencesD. Zhenyu et al., Molecular dynamics study on viscosity coefficient of working fluid in supercritical CO2 Brayton cycle: Effect of trace gas, Journal of CO2 Utilization, vol. 38, pp. 177–186, May 2020.spa
dcterms.referencesS. Alharbi, M. L. Elsayed, and L. C. Chow, Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination, Energy, vol. 197, p. 117225, Apr. 2020.spa
dcterms.referencesH. Li, J. Chen, D. Sheng, and W. Li, The improved distribution method of negentropy and performance evaluation of CCPPs based on the structure theory of thermoeconomics, Applied Thermal Engineering, vol. 96, pp. 64–75, Mar. 2016.spa
dcterms.referencesM. Hadi Mohammadi, H. Reza Abbasi, A. Yavarinasab, and H. Pourrahmani, Thermal optimization of shell and tube heat exchanger using porous baffles, Applied Thermal Engineering, p. 115005, Jan. 2020.spa
dcterms.referencesS. Tajmiri, E. Azimi, M. R. Hosseini, and Y. Azimi, Evolving multilayer perceptron, and factorial design for modelling and optimization of dye decomposition by bio-synthetized nano CdS-diatomite composite, Environmental Research, vol. 182, no. November 2019, p. 108997, 2020.spa
dcterms.referencesU. Roy and M. Majumder, Evaluating heat transfer analysis in heat exchanger using NN with IGWO algorithm, Vacuum, vol. 161, pp. 186–193, Mar. 2019.spa
dcterms.referencesA. Uusitalo, A. Ameli, and T. Turunen-Saaresti, Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery, Energy, vol. 167, pp. 60–79, 2019.spa
dcterms.referencesJ. Syblik, L. Vesely, S. Entler, J. Stepanek, and V. Dostal, Analysis of supercritical CO2 Brayton power cycles in nuclear and fusion energy, Fusion Engineering and Design, vol. 146, pp. 1520–1523, Sep. 2019.spa
dcterms.referencesBozza, F., Teodosio, L., De Bellis, V., Cacciatore, D., Minarelli, F., Aliperti, A., A Modelling Study to Analyse the Compression Ratio Effects on Combustion and Knock Phenomena in a High-Performance Spark-Ignition GDI Engine, (2018) International Review on Modelling and Simulations (IREMOS), 11 (3), pp. 187-197.spa
dcterms.referencesB. Olcucuoglu and B. H. Saracoglu, A preliminary heat transfer analysis of pulse detonation engines, Transportation Research Procedia, vol. 29, pp. 279–288, 2018.spa
dcterms.referencesH. Habibi, M. Zoghi, A. Chitsaz, K. Javaherdeh, and M. Ayazpour, Thermo-economic analysis and optimization of combined PERC - ORC - LNG power system for diesel engine waste heat recovery, Energy Conversion and Management, vol. 173, pp. 613–625, Oct. 2018.spa
dcterms.referencesR. V. Padilla, Y. C. Soo Too, R. Benito, and W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Applied Energy, vol. 148, no. June, pp. 348–365, 2015.spa
dcterms.referencesB. D. Iverson, T. M. Conboy, J. J. Pasch, and A. M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Applied Energy, vol. 111, pp. 957–970, 2013.spa
dcterms.referencesC. S. Turchi, Z. Ma, T. W. Neises, and M. J. Wagner, Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems, Journal of Solar Energy Engineering, vol. 135, no. 4, Jun. 2013.spa
dcterms.referencesM. Kulhánek and V. Dostál, Thermodynamic analysis and comparison of supercritical carbon dioxide cycles, Proceedings of Supercritical CO2 Power Cycle Symposium, Jan. 2011.spa
dcterms.referencesV. Dostal, Driscoll M. J., and P. Hejzlar, A supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT Center for Advanced Nuclear Energy Systems, 2004.spa
dc.identifier.doihttps://doi.org/10.15866/irecon.v8i5.19105
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol.8 No.5.(2020)spa
dc.relation.citationendpage161spa
dc.relation.citationissue5(2020)spa
dc.relation.citationstartpage153spa
dc.relation.citationvolume8spa
dc.relation.citesardenas, J., Valencia, G., Duarte Forero, J., Comparative Analysis of Supercritical CO2 Brayton Cycles with Simple and Partial Cooling Configurations, (2020) International Journal on Energy Conversion (IRECON), 8 (5), pp. 153-161. doi:https://doi.org/10.15866/irecon.v8i5.19105
dc.relation.ispartofjournalInternational Journal on Energy Conversionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposalBrayton Cycleeng
dc.subject.proposalExergy Analysiseng
dc.subject.proposalSupercritical Cycleeng
dc.subject.proposalThermal Efficiencyeng
dc.subject.proposalThermodynamic Modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem