Mostrar el registro sencillo del ítem

dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.contributor.authorRojas Suárez, Jhan Piero
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.date.accessioned2021-11-19T17:03:52Z
dc.date.available2021-11-19T17:03:52Z
dc.date.issued2020-10
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1156
dc.description.abstractThe use of shell and tube heat exchangers for waste heat recovery has shown excellent results in increasing engine performance, as well as offering a large surface area for small volumes, ease of cleaning, good mechanical layout, and well-known design procedure. This article presents the modeling of the coupling circuit and thermo-fluid design of the heat exchangers in the thermal oil circuit in order to maximize the heat transfer of this equipment at the lowest pressure drop and acquisition cost, which is obtained with a smaller heat transfer area. The research results show the existence of optimal values for the studied system parameters, type of organic working fluid, type of heat exchangers, besides the size of the other system components, which are particular for the studied application. However, these results cannot be compared with the real projects already implemented in the industry due to their absence. It has been verified that the fluids that have showed the best performance in terms of thermal efficiency have been acetone and benzene, with an overall thermal efficiency of 17% and 15%, respectively.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Review of Mechanical Engineeringspa
dc.relation.ispartofInternational Review of Mechanical Engineering
dc.rights© 2020 Praise Worthy Prize S.r.l. - All rights reservedeng
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=ireme&page=article&op=view&path[]=24822spa
dc.titleExhaust gas heat exchanger design based on the engine backpressure and heat rate criteriaeng
dc.typeArtículo de revistaspa
dcterms.referencesOrozco, W., Acuña, N., Duarte Forero, J., Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System, (2019) International Review of Mechanical Engineering (IREME), 13 (7), pp. 420-426.spa
dcterms.referencesKallista, M., Nuraini, N., Numerical Solution for Blood Losses Phenomenon in Narrow Vessels, (2018) International Review on Modelling and Simulations (IREMOS), 11 (2), pp. 117-124.spa
dcterms.referencesG. Valencia, A. Fontalvo, and J.D. Forero, Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: Thermo-economic and environmental footprint analysis, Applied Thermal Engineering, vol. 182, no.5, p. 116109, 2021.spa
dcterms.referencesRojas, D., Ramos Sandoval, O., Amaya, D., Control of a Furnace and a Heat Exchanger Used in Oil Refining Industry by Using Virtual Environments, (2018) International Review on Modelling and Simulations (IREMOS), 11 (5), pp. 288-296.spa
dcterms.referencesJ. D. Forero, G. V. Ochoa, and W. P. Alvarado, Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine, Lubricants, vol. 8, no. 11, p. 97, 2020.spa
dcterms.referencesvspa
dcterms.referencesA. Sunil and G. K.B., Design of Shell and Tube Heat Exchanger Using Computational Fluid Dynamics Tools, Research Journal of Engineering Sciences, vol. 3. 2014.spa
dcterms.referencesPathan, K., Dabeer, P., Khan, S., An Investigation to Control Base Pressure in Suddenly Expanded Flows, (2018) International Review of Aerospace Engineering (IREASE), 11 (4), pp. 162-169.spa
dcterms.referencesS. Cong, C. P. Garner, and G. P. McTaggart-Cowan, The Effects of Exhaust Back Pressure on Conventional and Low-Temperature Diesel Combustion, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 225, no. 2, pp. 222–235, 2011.spa
dcterms.referencesC. N. Michos, S. Lion, I. Vlaskos, and R. Taccani, Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications, Energy Convers. Manag., vol. 132, no. 25, pp. 347–360, 2017.spa
dcterms.referencesD. Di Battista, M. Mauriello, and R. Cipollone, Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle, Appl. Energy, vol. 152, pp. 109–120, 2015.spa
dcterms.referencesA. Allouache, S. Leggett, M. J. Hall, M. Tu, C. Baker, and H. Fateh, Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine, SAE Int. J. Mater. Manuf., vol. 8, no. 2, pp. 227–238, 2015.spa
dcterms.referencesS. Bari and S. N. Hossain, Waste heat recovery from a diesel engine using shell and tube heat exchanger, Appl. Therm. Eng., vol. 61, no. 2, pp. 355–363, 2013.spa
dcterms.referencesX. Du, L. Feng, Y. Yang, and L. Yang, Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators, Appl. Therm. Eng., vol. 50, no. 1, pp. 55–62, 2013.spa
dcterms.referencesOrozco, T., Herrera, M., Duarte Forero, J., CFD Study of Heat Exchangers Applied in Brayton Cycles: a Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid, (2019) International Review on Modelling and Simulations (IREMOS), 12 (2), pp. 72-82.spa
dcterms.referencesJ. Abugaber-Francis, A. Reyes-León, F. Sánchez-Silva, M. T. Velázquez, C. Reséndiz-Rosas, and P. Quinto-Diez, The Design of Heat Exchangers, Engineering, vol. 03, no. 9, pp. 911–920, 2011.spa
dcterms.referencesP. Benefits, Technical Data Sheet Therminol ® 66 Heat Transfer Fluid.spa
dcterms.referencesM. Sulaiman, S. Kuye, and S. Owolabi, Investigation of fouling effect on overall performance of shell and tube heat exchanger in a urea fertilizer production company in Nigeria, Niger. J. Technol., vol. 35, no. 1, p. 129, 2016.spa
dcterms.referencesJ. R. Couper, W. R. Penney, J. R. Fair, and S. M. B. T.-C. P. E. (Second E. Walas, Eds., Chapter 8 - Heat Transfer and Heat Exchangers, Burlington: Gulf Professional Publishing, 2005, pp. 165–224.spa
dcterms.referencesL. Pierobon, A. Benato, E. Scolari, F. Haglind, and A. Stoppato, Waste heat recovery technologies for offshore platforms, Appl. Energy, vol. 136, pp. 228–241, 2014.spa
dcterms.referencesK. Seshadri, Thermal design and optimization, Energy, vol. 21, no. 5, pp. 433–434, 2003.spa
dcterms.referencesH. Nami, I. S. Ertesvåg, R. Agromayor, L. Riboldi, and L. O. Nord, Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - energy and exergy analysis, Energy, vol. 165, pp. 1060-1071, 2018.spa
dcterms.referencesG. Valencia Ochoa, C. Isaza-Roldan, and J.D. Forero, Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential, Energies, vol. 13, no. 6, p. 1317, 2020.spa
dcterms.referencesObregon, L., Valencia, G., Duarte Forero, J., Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 245-252.spa
dcterms.referencesG. Amador, J.D. Forero, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, and W. Orozco, Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number, Journal of Energy Resources Technology, vol. 139, no. 4, p. 042205, 2017.spa
dc.identifier.doihttps://doi.org/10.15866/ireme.v14i10.19241
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol.14 No.10.(2020)spa
dc.relation.citationendpage665spa
dc.relation.citationissue10(2020)spa
dc.relation.citationstartpage658spa
dc.relation.citationvolume14spa
dc.relation.citesRojas, J., Acevedo, C., Cardenas, J., Exhaust Gas Heat Exchanger Design Based on the Engine Backpressure and Heat Rate Criteria, (2020) International Review of Mechanical Engineering (IREME), 14 (10), pp. 658-665. doi:https://doi.org/10.15866/ireme.v14i10.19241
dc.relation.ispartofjournalInternational Review of Mechanical Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposalEngineeng
dc.subject.proposalExhaust Gaseng
dc.subject.proposalOrganic Rankine Cycleeng
dc.subject.proposalPressure Dropeng
dc.subject.proposalShell and Tube Heat Exchangereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem