Mostrar el registro sencillo del ítem

dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.contributor.authorbarrientos, ender jose
dc.contributor.authorRomero Garcia, Gonzalo de la Cruz
dc.date.accessioned2021-11-19T16:52:53Z
dc.date.available2021-11-19T16:52:53Z
dc.date.issued2020-10
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1154
dc.description.abstractHeat exchange processes are widely applicable in industry and research. The process of design and optimization of these types of devices is of particular interest, since they generate a high rate of exergy destruction. In this study, a correlation between the data presented by the OpenFOAM® software computer model of the assembly of a jacketed vessel heat exchanger has been made. The influence of the overall heat transfer coefficient on the temperature profile and the relationship between Reynolds number and the heat yielded by hot water have been studied. It has been concluded that the theoretical-experimental model has an analogy with the CFD one, which has showed an admissible error of 9.3% for different volumetric flows in relation to the overall heat transfer coefficient and temperature. Therefore, it shows a significant advantage in the use of the computational model to find a correlation with the experimental data. Additionally, the cost of experimentation can be reduced using computational tools.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Review on Modelling and Simulationsspa
dc.relation.ispartofInternational Review on Modelling and Simulations
dc.rights© 2020 Praise Worthy Prize S.r.l. - All rights reservedeng
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=iremos&page=article&op=view&path[]=24632spa
dc.titleExperimental and CFD characterization of the jacket vessel heat transfer processeng
dc.typeArtículo de revistaspa
dcterms.referencesS. Lal et al., CFD modeling of convective scalar transport in a macroporous material for drying applications, International Journal of Thermal Sciences, vol. 123, pp. 86–98, Jan. 2018.spa
dcterms.referencesX. Li, G. Xie, J. Liu, and B. Sunden, Parametric study on flow characteristics and heat transfer in rectangular channels with strip slits in ribs on one wall, International Journal of Heat and Mass Transfer, vol. 149, p. 118396, Mar. 2020.spa
dcterms.referencesX. Wang et al., Study on the water seal formation process in advanced PWR pressurizer using CFD method, Annals of Nuclear Energy, 2020.spa
dcterms.referencesC. Abeykoon, Compact heat exchangers – Design and optimization with CFD, International Journal of Heat and Mass Transfer, 2020.spa
dcterms.referencesC. G. du Toit and H. J. van Antwerpen, Effect of reactor vessel cooling insulation and reflector heat pipes on the temperatures of a pebble-bed reactor using a system CFD approach, Nuclear Engineering and Design, vol. 357, p. 110421, 2020.spa
dcterms.referencesM. H. A. Piro et al., Fluid flow in a diametrally expanded CANDU fuel channel – Part 2: Computational study, Nuclear Engineering and Design, vol. 357, p. 110372, 2020.spa
dcterms.referencesB. Kütük and İ. H. Güzelbey, Computational fluid dynamics analyses of a VVER-1200 nuclear reactor vessel for symmetric inlet, asymmetric inlet, and LOCA conditions, International Journal of Pressure Vessels and Piping, vol. 187, p. 104165, 2020.spa
dcterms.referencesG. Vijaya Kumar, M. Kampili, S. Kelm, K. Arul Prakash, and H.-J. Allelein, CFD modelling of buoyancy driven flows in enclosures with relevance to nuclear reactor safety, Nuclear Engineering and Design, vol. 365, p. 110682, 2020.spa
dcterms.referencesM. Colombo and M. Fairweather, Application of CFD modelling to external nuclear reactor vessel cooling, in 28 European Symposium on Computer Aided Process Engineering, vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, and T. B. T.-C. A. C. E. Wallek, Eds. Elsevier, 2018, pp. 1027–1032.spa
dcterms.referencesA. Eltayeb, S. Tan, Z. Qi, A. A. Ala, and N. M. Ahmed, PLIF experimental validation of a FLUENT CFD model of a coolant mixing in reactor vessel down-comer, Annals of Nuclear Energy, vol. 128, pp. 190–202, 2019.spa
dcterms.referencesJ. Wutz, B. Waterkotte, K. Heitmann, and T. Wucherpfennig, Computational fluid dynamics (CFD) as a tool for industrial UF/DF tank optimization, Biochemical Engineering Journal, vol. 160, p. 107617, 2020.spa
dcterms.referencesL. Castro, J.-L. François, and C. García, Coupled Monte Carlo-CFD analysis of heat transfer phenomena in a supercritical water reactor fuel assembly, Annals of Nuclear Energy, vol. 141, p. 107312, 2020.spa
dcterms.referencesT. Ziegenhein, D. Lucas, G. Besagni, and F. Inzoli, Experimental study of the liquid velocity and turbulence in a large-scale air-water counter-current bubble column, Experimental Thermal and Fluid Science, vol. 111, no. October 2019, p. 109955, 2020.spa
dcterms.referencesA. M. González, M. Vaz, and P. S. B. Zdanski, A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers, Applied Thermal Engineering, vol. 148, pp. 363–370, Feb. 2019.spa
dcterms.referencesC. Windt et al., Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter, Renewable Energy, vol. 146, pp. 2499–2516, 2020.spa
dcterms.referencesD. Yang, T. S. Khan, E. Al-Hajri, Z. H. Ayub, and A. H. Ayub, Geometric optimization of shell and tube heat exchanger with interstitial twisted tapes outside the tubes applying CFD techniques, Applied Thermal Engineering, vol. 152, pp. 559–572, Apr. 2019.spa
dcterms.referencesA. S. Ambekar, R. Sivakumar, N. Anantharaman, and M. Vivekenandan, “CFD simulation study of shell and tube heat exchangers with different baffle segment configurations,” Applied Thermal Engineering, vol. 108, pp. 999–1007, Sep. 2016.spa
dcterms.referencesA. Zargoushi, F. Talebi, and S. H. Hosseini, CFD modeling of industrial cold box with plate-fin heat exchanger: Focusing on phase change phenomenon, International Journal of Heat and Mass Transfer, vol. 147, p. 118936, Feb. 2020.spa
dcterms.referencesD. Y. Kim and H. C. No, A CFD-based design optimization of air-cooled passive decay heat removal system, Nuclear Engineering and Design, vol. 337, pp. 351–363, Oct. 2018.spa
dcterms.referencesW. M. Hashim, H. A. Hoshi, and H. A. Al-Salihi, Enhancement the performance of swirl heat exchanger by using vortices and NanoAluminume, Heliyon, vol. 5, no. 8, p. e02268, 2019.spa
dcterms.referencesF. Alshammari, A. Karvountzis-Kontakiotis, A. Pesiridis, and T. Minton, Radial expander design for an engine organic Rankine cycle waste heat recovery system, Energy Procedia, vol. 129, pp. 285–292, 2017.spa
dcterms.referencesF. Chen, Y. Lu, X. Chen, Z. Li, X. Yu, and A. P. Roskilly, Numerical study of using different Organic Rankine cycle working fluids for engine coolant energy recovery, Energy Procedia, vol. 142, pp. 1448–1454, 2017.spa
dcterms.referencesL. L. Tong, L. Q. Hou, and X. W. Cao, Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel, Nuclear Engineering and Technology, 2020.spa
dcterms.referencesDe la Hoz, J., Valencia, G., Duarte Forero, J., Reynolds Averaged Navier–Stokes Simulations of the Airflow in a Centrifugal Fan Using OpenFOAM, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 230-239.spa
dcterms.referencesObregon, L., Valencia, G., Duarte Forero, J., Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 245-252.spa
dcterms.referencesR. Ramirez, E. Avila, L. Lopez, A. Bula, and J.D. Forero, CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps, Alexandria Engineering Journal, vol. 59, no. 1, pp. 291-309, Feb. 2020.spa
dcterms.referencesC.A.F. Conrado, R.P. Arrieta, and J.D. Forero, Centrifugal pump energy optimization through parametric analysis in CFD and energy loss models, INGE CUC, vol. 16, no. 1, pp. 1-21, Jan. 2020.spa
dcterms.referencesM. Riella, R. Kahraman, and G. R. Tabor, Fully-coupled pressure-based two-fluid solver for the solution of turbulent fluid-particle systems, Computers and Fluids, vol. 192, 2019.spa
dcterms.referencesG. J. Brown, D. F. Fletcher, J. W. Leggoe, and D. S. Whyte, Application of hybrid RANS-LES models to the prediction of flow behaviour in an industrial crystalliser, Applied Mathematical Modelling, vol. 77, pp. 1797–1819, 2020.spa
dc.identifier.doihttps://doi.org/10.15866/iremos.v13i5.18882
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol.13 No.5.(2020)spa
dc.relation.citationendpage336spa
dc.relation.citationissue5(2020)spa
dc.relation.citationstartpage329spa
dc.relation.citationvolume13spa
dc.relation.citesRomero Garcia, G., Florez Solano, E., Cardenas, J., Experimental and CFD Characterization of the Jacket Vessel Heat Transfer Process, (2020) International Review on Modelling and Simulations (IREMOS), 13 (5), pp. 329-336. doi:https://doi.org/10.15866/iremos.v13i5.18882
dc.relation.ispartofjournalInternational Review on Modelling and Simulationsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)spa
dc.subject.proposalComputational Modeleng
dc.subject.proposalHeat Exchangereng
dc.subject.proposalHeat Transfereng
dc.subject.proposalJacketed Vesseleng
dc.subject.proposalTurbulence Modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem