dc.contributor.author | calixto, nelson javier | |
dc.contributor.author | Varon Torres, Yarley Paola | |
dc.contributor.author | Fuentes Sierra, Rosa Maria | |
dc.date.accessioned | 2021-11-19T13:57:59Z | |
dc.date.available | 2021-11-19T13:57:59Z | |
dc.date.issued | 2019-11-19 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1130 | |
dc.description.abstract | The present work consisted in the implementation of a small-scale physical model of a mountain river according to the similarity conditions that these models must satisfy, this model was implemented in a channel with measures 200 cm length, base 20 cm and height of 15 cm; a variable slope between 1% and 5% was handled, it was evaluated with the design conditions of open-flow channels, developing a methodology of physical modeling of channels and rivers of mobile bottom without distortion, according to a turbulent flow over rough contour, so that the values determined in the physical model complied with the laws of similarity and represented the most accurate way to a mountain river. The results showed a minimum flow of 8.03 l/s and a maximum of 17.96 l/s in the physical model, which in the prototype represents a flow of 284 m3/s and 635.04 m3/s respectively. On the other hand, it was determined that the average diameter of the granular material required in the physical model is 2 mm corresponding to an average diameter of 100 mm for mountain rivers. | eng |
dc.format.extent | 06 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights | © Copyright 2021 IOP Publishing | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1388/1/012041/meta | spa |
dc.title | Implementation of a physical model to determine the hydraulic behavior of mountain rivers | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Vergara M 1993 Tecnicas de modelación en hidráulica (Buenos Aires: Alfaomega) | spa |
dcterms.references | Wang W, Dong Z, Si W, Zhang Y and Xu W 2018 Water Resources Management 32 3801 | spa |
dcterms.references | Hernandez D and Montaña D 2016 Estimación de la socavación en el rio Fonce (San Gil, Santander) bajo condiciones de caudales mínimos y mediante el método de momentos estadísticos iniciales y centrales (Cajicá: Universidad Militar Nueva Granada) | spa |
dcterms.references | Lopez Alonso R 2005 Cimbra, Revista del Colegio de Ingenieros Técnicos de Obras Publicas 361 36 | spa |
dcterms.references | Lopez Alonso R 2005 Cimbra, Revista del Colegio de Ingenieros Técnicos de Obras Publicas 362 28 | spa |
dcterms.references | Chow V 1994 Hidraulica de canales abiertos (Mexico: Mc Graw Hill) | spa |
dcterms.references | Rocha A 2007 Hidraulica de tuberias y canales (Lima: Universidad Nacional de Ingeniería) | spa |
dcterms.references | León A and Martinez Y 2013 Hidráulica de las conducciones libres (La Habana: Editorial Universitaria Felix Varela) | spa |
dcterms.references | Castellanos H E, Collazos C A, Farfan J C and Meléndez-Pertuz F 2017 Información Tecnológica 28 103 | spa |
dcterms.references | Heller V 2011 Journal of Hydraulic Research 49 293 | spa |
dcterms.references | Webb C B, Barfuss S L and Johnson M C 2010 Journal of Hydraulic Research 48 260 | spa |
dcterms.references | Cantero Chinchilla F, Castro Orgaz O and Ayuso Muñoz J 2015 IV Jornada de Ingenieria del Agua (Cordoba) (Zaragoza: Fundación Nueva Cultura del Agua) Efecto de diferentes formulaciones de carga de fondo en flujos transitorios con lecho móvil 1 | spa |
dcterms.references | Aguirre-Pe J, Olivero M L and Moncada A 2001 Revista Ciencia e Ingenieria 22 1 | spa |
dcterms.references | Montgomery M, David R and Buffington J 1995 Geologial Society of America Bulletin 109 596 | spa |
dcterms.references | Ortiz Aguilera Y and Gómez Mayorga Y 2017 Modelación matemática e hidráulica del flujo en pilares en un canal con sedimentación (Bogotá: Universidad Distrital Francisco José de Caldas) | spa |
dc.identifier.doi | https://doi.org/10.1088/1742-6596/1388/1/012041 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.1388 No.1.(2019) | spa |
dc.relation.citationendpage | 6 | spa |
dc.relation.citationissue | 1(2019) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1388 | spa |
dc.relation.cites | Cely, N. J., Varón, Y. P., & Fuentes, R. M. (2019, November). Implementation of a physical model to determine the hydraulic behavior of mountain rivers. In Journal of Physics: Conference Series (Vol. 1388, No. 1, p. 012041). IOP Publishing. | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |