Mostrar el registro sencillo del ítem

dc.contributor.authorRaba, Angela
dc.contributor.authorFalcony, Ciro
dc.contributor.authorSupelano, Ivan
dc.contributor.authorRincón Joya, Miryam
dc.date.accessioned2021-11-15T16:29:02Z
dc.date.available2021-11-15T16:29:02Z
dc.date.issued2020-06-21
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/988
dc.description.abstractIn order to improve the photocatalytic effect of Nb2O5, manganese from 1% to 10% was added by the polymeric precursor’s method. The samples obtained were subjected to different calcination temperatures from 400 to 700 °C. Characterization of the synthesized materials was performed by XRD, IR, Raman and Diffuse Reflectance Spectroscopy (DRS) spectroscopy, FE-SEM, Brunauer–Emmett–Teller (BET) method, Photoluminescence (PL) and Dynamic Light Scattering (DLS). Photocatalytic performance for degradation of Rhodamine B was also evaluated. The Rietveld refined X-Ray Diffraction (XRD) pattern of Nb2O5:Mn 1.0 wt.% (700 °C) sample was similar to that of the un-doped oxide, therefore indicating that Nb was replaced by Mn and, consequently, there are not significant variations in the oxide structure. The Nb2O5:Mn 10.0 wt.% (700 °C) sample has the lowest band gap energy. The specific surface area (SBET) PL value increased as manganese concentration increased. The Nb2O5:Mn 5.0 wt.% (700 °C) sample has an Eg of 3.15 eV and morphological and surface characteristics that made it an appropriate photocatalyst in the Rhodamine B degradation. The novelty of this work relies on the use of a small quantity of Mn ions as dopants leading to Nb2O5:Mn nanostructured particles without using any surfactant or other additiveseng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences
dc.rights2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).eng
dc.sourcehttps://www.mdpi.com/2076-3417/10/12/4257spa
dc.titleNiobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine Beng
dc.typeArtículo de revistaspa
dcterms.referencesAlexandre, P.; Lucas, B.; Carolina, P.; Aline, M.; Leonardo, C. Nb2O5 as Efficient and Recyclable Photocatalyst for Indigo Carmine Degradation. Appl. Catal. B 2008, 82, 219–224.spa
dcterms.referencesWonyong, C.; Andreas, T.; Michael, H.R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679.spa
dcterms.referencesSiddiki, M.K.; Venkatesan, S.; Qiao, Q. Nb2O5 as a new electron transport layer for double junction polymer solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4682–4686. [CrossRef] [PubMed]spa
dcterms.referencesYoshimura, K.; Miki, T.; Iwama, S.; Tanemura, S. Characterization of niobium oxide electrochromic thin films prepared by reactive d.c. magnetron sputtering. Thin Solid Films 1996, 281, 235–238. [CrossRef]spa
dcterms.referencesFang, X.; Hu, L.; Huo, K.; Gao, B.; Zhao, L.; Liao, M.; Chu, P.K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907–3915. [CrossRef]spa
dcterms.referencesJung, S.C.; Imaishi, N.; Park, H.C. Reaction engineering modeling of low-pressure metalorganic chemical vapor deposition of Nb2O5 thin film. Jpn. J. Appl. Phys. 1995, 34, L775. [CrossRef]spa
dcterms.referencesRoberts, G.L.; Cava, R.J.; Peck, W.F.; Krajewski, J.J. Dielectric properties of barium titanium niobates. J. Mater. Sci. 1997, 12, 526–530. [CrossRef]spa
dcterms.referencesRamanjaneya Reddya, G.; Chennakesavulu, K. Synthesis and characterization of Nb2O5 supported Pd(II)@SBA15: Catalytic activity towards oxidation of benzhydrol and Rhodamine-B. J. Mol. Struct. 2014, 1075, 406–412. [CrossRef]spa
dcterms.referencesFalcomer, D.; Speghini, A.; Ibba, G.; Enzo, S.; Cannas, C.; Musinu, A.; Bettinelli, M. Morphology and luminescence of nanocrystalline Nb2O5 doped with Eu3+. J. Nanomater. 2007, 2007, 1–5. [CrossRef]spa
dcterms.referencesRekha, K.; Nirmala, M.; Nair, M.G.; Anukaliani, A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B Condens. Matter. 2010, 405, 3180–3185. [CrossRef]spa
dcterms.referencesJoya, M.R.; Ortega, J.B.; Malafatti, J.O.D.; Paris, E.C. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles. ACS Omega 2019, 4, 17477–17486. [CrossRef] [PubMed]spa
dcterms.references. Raba, A.M.; Falcony, C.; Joya, M.R. Evaluación de la actividad fotocatalítica de nanoestructuras de T-Nb2O5 obtenidas por el método sol-gel. Respuestas 2016, 21, 80–91. [CrossRef]spa
dcterms.referencesRania, B.J.; Ravina, M.; Ravia, G.; Ravichandranb, S.; Ganeshc, V.; Yuvakkumar, R. Synthesis and characterization of hausmannite (Mn3O4 ) nanostructures. Surf. Interface 2018, 11, 28–36. [CrossRef]spa
dcterms.referencesMasloboeva, S.M.; Sidorov, N.V.; Palatnikov, M.N.; Arutyunyan, L.G.; Chufyrev, P.G. Niobium(V) oxide doped with Mg2+ and Gd3+ cations: Synthesis and structural studies. Russ. J. Inorg. Chem. 2011, 56, 1194–1198. [CrossRef]spa
dcterms.referencesJehng, J.M.; Wachs, I.E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100–107. [CrossRef]spa
dcterms.referencesBraynera, R.; Bozon-Verduraz, F. Niobium pentoxide prepared by soft chemical routes: Morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 2003, 5, 1457–1466. [CrossRef]spa
dcterms.referencesRistic, M.; Popovic, S.; Music, S. Sol-gel synthesis and characterization of Nb2O5 powders. Mater. Lett. 2004, 58, 2658–2663. [CrossRef]spa
dcterms.referencesEscobedo, A.; Sánchez, E.; Pal, U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. 2007, 53, 18–22.spa
dcterms.referencesTauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [CrossRef]spa
dcterms.referencesRaba, A.M.; Bautista-Ruíz, J.; Joya, M.R. Synthesis and structural properties of niobium pentoxide powders: A comparative study of the growth process. Mater. Res. 2016, 19, 1381. [CrossRef]spa
dcterms.referencesRaba, A.; Barba-Ortega, J.; Joya, M.R. Effects of metal doping agent on the properties of Nb2−xMxO5 (M = Mn, Fe, and Ni) system. Int. J. Appl. Ceram. Technol. 2018, 15, 1577–1583. [CrossRef]spa
dcterms.referencesLiqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater. Sol. Cells 2006, 90, 1773–1787. [CrossRef]spa
dcterms.referencesLopes, O.F.; Paris, E.C.; Ribeiro, C. Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl. Catal. B Eenviron. 2014, 144, 800–808. [CrossRef]spa
dcterms.referencesYan, M.; Hua, Y.; Zhu, F.; Gu, W.; Jiang, J.; Shen, H.; Shi, W. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl. Catal. B Eenviron. 2017, 202, 518–527. [CrossRef]spa
dcterms.referencesFerrari-Lima, A.M.; Marques, R.G.; Gimenes, M.L.; Fernandes-Machado, N.R.C. Synthesis, characterization and Photocatalytic activity of N-doped TiO2-Nb2O5 mixed oxides. Catal. Today 2015, 254, 119–128. [CrossRef]spa
dcterms.referencesOliveira, J.A.; Reis, M.O.; Pires, M.S.; Ruotolo, L.A.M.; Ramalho, T.C.; Oliveira, C.R.; Lacerda, L.C.T.; Nogueira, F.G.E. Zn-doped Nb2O5 photocatalysts driven by visible-light: An experimental and theoretical study. Mater. Chem. Phys. 2019, 228, 160–167. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/app10124257
dc.publisher.placeBerna , Suizaspa
dc.relation.citationeditionVol.10 No.12.(2020)spa
dc.relation.citationendpage14spa
dc.relation.citationissue12 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume10spa
dc.relation.citesRaba-Paéz, A. M., Falcony-Guajardo, C., Supelano-García, I., & Joya, M. R. (2020). Niobium pentoxide samples with addition of manganese at different concentrations and calcination temperatures applied in the photocatalytic degradation of rhodamine B. Applied Sciences, 10(12), 4257.
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMn-doped Nb2O5eng
dc.subject.proposalpolymeric precursoreng
dc.subject.proposalcharacterizationeng
dc.subject.proposalphotocatalysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem