Mostrar el registro sencillo del ítem
Performance comparison between PWM and MPPT charge controllers
Comparación del desempeño entre un controlador de carga PWM y un controlador MPPT
dc.contributor.author | Laguado, Miguel | |
dc.contributor.author | Luna Paipa, Eduardo Andres | |
dc.contributor.author | Bustos Marquez, Luis Fernando | |
dc.contributor.author | Sepúlveda, Sergio | |
dc.date.accessioned | 2021-11-12T21:41:05Z | |
dc.date.available | 2021-11-12T21:41:05Z | |
dc.date.issued | 2019-03 | |
dc.identifier.issn | 0122-1701 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/952 | |
dc.description.abstract | Charge controllers are implemented in several electronic systems to protect and control the charge and discharge rates of a battery; for off-grid Photovoltaic (PV) systems, there are two types of technologies, Pulse Width Modulation (PWM) and Maximum Power Point Tracking (MPPT). In this work, we compared two charge controllers in PV systems with the same technical specifications in order to determine the behavior of each of them under similar environmental conditions. The implementation of both charge controllers was based on firmware and hardware with original designs, using PWM and MPPT technologies. Both PV systems are composed of the charge controller, a 30 W solar panel and a 12 V – 18 Ah battery; in the experimental tests we measured the voltage and current in the panel and the battery in charge and discharge processes, observing that the MPPT controller has a higher average efficiency than the PWM controller, elucidating that the type of technology used in the charge controller has a direct impact on the efficiency, even under unfavorable conditions of solar radiation and environmental temperature. The PWM controller is an option of acceptable efficiency and lower price in relation to the MPPT controller. In the implementation of both controllers we calculated similar periods of autonomy. | eng |
dc.description.abstract | Los controladores de carga son implementados en varios sistemas electrónicos con el objetivo de proteger y controlar la carga y descarga de una batería; en el caso de los controladores utilizados en sistemas fotovoltaicos autónomos se implementan dos tipos de tecnologías, Pulse Width Modulation (PWM) y Maximum Power Point Tracking (MPPT). En este artículo se compararon dos controladores de carga con diseños originales en sistemas fotovoltaicos con las mismas especificaciones técnicas para determinar el comportamiento de cada uno bajo condiciones ambientales similares. La implementación de ambos controladores de carga se basó en software y hardware con diseños originales, utilizando tecnología PWM y MPPT. Ambos sistemas están compuestos por el controlador de carga, un panel solar de 30 W y una batería de 12 V a 18 Ah; se realizaron las pruebas experimentales de ambos controladores midiendo voltaje y corriente en el panel y en la batería en procesos de carga y descarga, observando que el controlador MPPT tiene una eficiencia promedio mayor que el controlador PWM debido a que el tipo de tecnología implementada influye directamente en la eficiencia, incluso ante valores menos favorables de radiación solar y temperatura ambiente. El controlador PWM es una opción de eficiencia aceptable y además de bajo costo respecto al controlador MPPT. En la implementación de ambos controladores se calcularon tiempos de autonomía similares. | spa |
dc.format.extent | 06 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Scientia et Technica | spa |
dc.relation.ispartof | Scientia et Technica | |
dc.source | https://revistas.utp.edu.co/index.php/revistaciencia/article/view/20681 | spa |
dc.title | Performance comparison between PWM and MPPT charge controllers | eng |
dc.title | Comparación del desempeño entre un controlador de carga PWM y un controlador MPPT | spa |
dc.type | Artículo de revista | spa |
dcterms.references | T. Peterson and C. Horton, “Communicating about Solar Energy and Climate Change”, Oxford Research Encyclopedia of Climate Science, pp. 1-48, 2017. DOI: 10.1093/acrefore/9780190228620.013.437 | spa |
dcterms.references | K. Bos, and J.Gupta J, “Climate change: the risks of stranded fossil fuel assets and resources to the developing world”, Third World Quarterly, pp. 1-18, 2017. DOI: 10.1080/01436597.2017.1387477 | spa |
dcterms.references | R. Nasrin, and N. Hasanuzzaman, “Effect of high irradiation on photovoltaic power and energy”, International Journal of Energy Research, 2017. DOI: 10.1002/er.3907 | spa |
dcterms.references | R. Thapa, “Off-Grid Energy an Option for Rural Energy Solution”, Imperial Journal of Interdisciplinary Research, vol. 3, pp. 1064-1070, 2017. | spa |
dcterms.references | A. Escobar, C. Torres, and R. Hincapie, “Conexión de un sistema fotovoltaico a la red eléctrica”, Scientia Et Technica, vol. XV, nº 43, pp. 31-36, 2009. DOI:10.22517/23447214.1751 | spa |
dcterms.references | A. Gaga, O. Diouri, N. Es-sbai, and F. Errahimi, “Design and realization of an autonomous solar system”, IOP Conference Series: Materials Science and Engineering, pp. 1-10, 2017. DOI: 10.1088/1757-899X/186/1/012031 | spa |
dcterms.references | D. Hoyos, “Análisis, diseño y construcción de un controlador fotovoltaico”, Publicación de Avances en Energías Renovables y Medio Ambiente, vol. 9, pp. 1-6, 2005. | spa |
dcterms.references | Y. Yang, Y. Qing, L. Tung, M. Greenleaf, and L. Hui, “Integrated Size and Energy Management Design of Battery Storage to Enhance Grid Integration of Large-scale PV Power Plants”, IEEE Transactions on industrial electronics, 2017. DOI: 10.1109/TIE.2017.2721878 | spa |
dcterms.references | J. Chang, H. Liahng, and C. Yi Hung, “Solar power generation system for reducing leakage current”, International Journal of Electronics, pp. 1-15, 2017. DOI: 10.1080/00207217.2017.1382010 | spa |
dcterms.references | I. Elzein, “An Evaluation of Photovoltaic Systems MPPT Techniques under the Characteristics of Operational Conditions”, Journal of the American Society for Information Science, vol. 2, nº 2, pp. 30-38, 2017. | spa |
dcterms.references | S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications”, Journal of Power Sources, pp. 113-120, 2001. DOI: 10.1016/S0378-7753(01)00560-2 | spa |
dc.identifier.doi | http://dx.doi.org/10.22517/23447214.20681 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.24 No.1.(2019) | spa |
dc.relation.citationendpage | 11 | spa |
dc.relation.citationissue | 1(2019) | spa |
dc.relation.citationstartpage | 6 | spa |
dc.relation.citationvolume | 24 | spa |
dc.relation.cites | Laguado–Serrano, M. A., Paipa, E. L., Bustos–Márquez, L. F., & Sepulveda–Mora, S. B. (2019). Performance comparison between PWM and MPPT charge controllers. Scientia et technica, 24(1), 6-11. | |
dc.relation.ispartofjournal | Scientia et Technica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Charge controller | eng |
dc.subject.proposal | Maximum Power Point Tracking | eng |
dc.subject.proposal | Micro-controller | eng |
dc.subject.proposal | Off-grid PV Systems | eng |
dc.subject.proposal | Pulse Width Modulation | eng |
dc.subject.proposal | Controlador de carga | spa |
dc.subject.proposal | Microcontrolador | spa |
dc.subject.proposal | Modulación por ancho de pulsos | spa |
dc.subject.proposal | Seguidor de Punto de Máxima Potencia | spa |
dc.subject.proposal | Sistema Fotovoltaico Autónomo | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |