Mostrar el registro sencillo del ítem

dc.contributor.authorSALAZAR MERCADO, SEIR ANTONIO
dc.contributor.authorQuintero Caleño, Jesús David
dc.date.accessioned2021-11-12T14:05:22Z
dc.date.available2021-11-12T14:05:22Z
dc.date.issued2020-09-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/929
dc.description.abstractThe present study aimed to determine the toxic effect of malathion pesticide on root growth, cell division and the chromosomal abnormalities frequency using the L. culinaris test. Initially, the lentil seeds were subjected to different doses of malathion (0.0 0.5, 1, 2.5, 5, 10, 15, 20, 25 and 30 mgL-1) and during 24, 48, and 72 h, the root length was measured. Subsequently, at 72h, the mitotic index, mitotic inhibition, and cellular abnormalities were calculated for all treatments. According to the obtained results, it was visualized that the root growth was inversely proportional to the concentration of malathion at all times of exposure. After 72h of exposure, the lowest values of the mitotic index and inhibition were presented at malathion concentrations 20, 25 and 30 mgL-1. Additionally, micronuclei cell abnormalities, metaphase sticky chromosomes, split chromosomes, nuclear lesions, irregular anaphase, anaphase bridges, binucleated cells, absence of nucleus and telophase bridge were observed. Finally, Malathion induced mitodepressive and cytotoxic effects in the meristematic cells of the L. culinaris root tip. A high frequency of abnormality was found in the micronuclei, which represented an indicator of a high degree of toxicity at the cellular level.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHeliyonspa
dc.relation.ispartofHeliyon
dc.rights2405-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).eng
dc.sourcehttps://www.cell.com/heliyon/fulltext/S2405-8440(20)31689-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844020316893%3Fshowall%3Dtruespa
dc.titleDetermination of malathion's toxic effect on Lens culinaris Medik cell cycleeng
dc.typeArtículo de revistaspa
dcterms.referencesAbdelsalam N. Megeed A. Ali H.M. Salem M.Z.M. Al-Hayali M. Elshikh M.S. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Saf. 2018; 155: 76-85spa
dcterms.referencesAdam Z. Mikhael E. El-Ashry Z. Ehsan N. Ali R. Comparative cytogenetic and ultra-structural effects of storing dusted seeds of Vicia faba with insecticide malathion 1% and two insecticidal active plant products. World Appl. Sci. J. 2014; 32: 1423-1436spa
dcterms.referencesAkhgari M. Abdollahi M. Kebryaeezadeh A. Hosseini R. Sabzevari O. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 2003; 22: 205-211spa
dcterms.referencesAndrade-Vieira L. Bernardes P. Ferreira M. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: a molecular approach. Chemosphere. 2018; 208: 257-262spa
dcterms.referencesBavcon M. Trebse P. Zupancic-Kralj L. Investigations of the determination and transformations of diazinon and Malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere. 2003; 50: 595-601spa
dcterms.referencesBhatia A. Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. Actapathologica, microbiologica, etimmunologica Scandinavica. 2013; : 569-581spa
dcterms.referencesBraga A. Melo A. de Oliveira Santos J. Reis A. Torres de Lima T. et al. Toxicogenetic study of omeprazole and the modulatory effects of retinol palmitate and ascorbic acid on Allium cepa. Chemosphere. 2018; 204: 220-226spa
dcterms.referencesBujagić I. Grujić S. Laušević M. Hofmann T. Micić V. Emerging contaminants in sediment core from the iron gate I reservoir on the Danube river. Sci.Total Environ. 2019spa
dcterms.referencesCliment M.J. Coscollà C. Lopez A. Barra R. Urrutia R. Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. Sci. Total Environ. 2019spa
dcterms.referencesCortesía C. Marcano L. Marcano Elena Zapata-Vívenes Edgar Inmunotoxicidad de malatión y clorpirifos en la lombriz de tierra Eisenia sp. (Annelida: Oligochaeta). Saber. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente. 2015; 27: 530-536spa
dcterms.referencesde Souza R. de Souza C. Bueno O. Fontanetti S. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere. 2017; 168: 1093-1099spa
dcterms.referencesDoherty A. Bryce S.M. Bemis J.C. The in vitro micronucleus assay. Gen. Toxicol. Test. 2016; : 161-205spa
dcterms.referencesElfikrie N. Ho Y. Zaidon S. Juahir H. Tan E. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 2020; 712: 136540spa
dcterms.referencesFatma F. Verma S. Kamal A. Srivastava A. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere. 2018; 195: 864-870spa
dcterms.referencesFisher S.W. Lydy M.J. Barger J. Landrum P.F. Quantitative structure-activity relationships for predicting the toxicity of pesticides in aquatic systems with sediment. Environ. Toxicol. Chem. 1993; 12: 1307-1318spa
dcterms.referencesGallo M. Lawryk N. Organic phosphorus pesticides. in: Hayes W.J. Laws E.R. Handbook of Pesticide Toxicology. Academic Press, New York1991: 5-13spa
dcterms.referencesGarcía-Medina S. Galar-Martínez M. Gómez-Oliván L. Torres-Bezaury R. Islas-Flores H. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): the carbamazepine case. Chemosphere. 2020; 253spa
dcterms.referencesHaq I. Kumar S. Raj A. Lohani M. Satyanarayana G. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere. 2017; 169: 642-650spa
dcterms.referencesHeikal Y.M. Şuţan N.A. Rizwan M. Elsayed A. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere. 2019; 125430spa
dcterms.referencesHoubraken M. Habimana V. Senaeve D. López-Dávila E. Spanoghe P. Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Sci. Total Environ. 2017; 576: 888-894spa
dcterms.referencesKawahara J. Yoshinaga J. Yanagisawa Y. Dietary exposure to organophosphorus pesticides for young children in Tokyo and neighboring area. Sci. Total Environ. 2007; 378: 263-268spa
dcterms.referencesKhanna N. Sharma S. Allium cepa root chromosomal aberration assay: a review. Indian J. Pharm. Biol. 2013; 1: 105-119spa
dcterms.referencesKöck-Schulmeyer M. Villagrasa M. López de Alda M. Céspedes-Sánchez R. Ventura F. Barceló D. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci. Total Environ. 2013; 458–460: 466-476spa
dcterms.referencesLessa L. Cariello F. Adsorção do paracetamol em carvão ativado: regressão da citotóxicidade e mutagênicidade no sistema Allium cepa. HÓRUS. 2017; 12: 44-54spa
dcterms.referencesLivanos P. Apostolakos P. Galatis B. Plant cell division. Plant Signal. Behav. 2012; 7: 771-778spa
dcterms.referencesMartins M. Ventura de Souza V. da Silva T. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium Cepa. Chemosphere. 2016; 148: 481-486spa
dcterms.referencesMeftaul I. Venkateswarlu K. Dharmarajan R. Annamalai P. Megharaj M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 2020; 711: 134612spa
dcterms.referencesMendoza E. González-Ramírez C. Martínez-Saldaña M. Avelar-González F.J. Valdivia-Flores A. Aldana-Madrid M. Rodríguez-Olibarría G. Jaramillo-Juárez F. Estudio de exposición a malatión y cipermetrina y su relación con el riesgo de daño renal en habitantes del municipio de Calvillo Aguascalientes. México Revista Mexicana de Ciencias Farmacéuticas. 2015; 46: 62-72spa
dcterms.referencesMhamdi A. Van Breusegem F. Reactive oxygen species in plant development. Development. 2018; 145: dev164376spa
dcterms.referencesPicó Y. Alvarez-Ruiz R. Alfarhan A.H. El-Sheikh M.A. Alobaid S.M. Barceló D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2018spa
dcterms.referencesRadović T. Grujić S. Petković A. Dimkić M. Laušević M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 2015; 187e4092spa
dcterms.referencesReiler E. Jørs E. Bælum J. Huici O. Alvarez Caero M.M. Cedergreen N. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Sci. Total Environ. 2015; 527–528: 262-269spa
dcterms.referencesRelyea R. Edwards K. What doesn't kill you makes you sluggish: how sublethal pesticides alter predator–prey interactions. Copeia. 2010; 2010: 558-567spa
dcterms.referencesReynoso M.S. Alvarez C. De la Cruz L. Escoto M. Sánchez J. Evaluation of the genotoxic activity of dicamba and atrazine herbicides in several Mexican and South American varieties of sweetcorn (Zea mays L.). Genet. Mol. Res. 2015; 14: 16585-16593spa
dcterms.referencesRosales J. Uso de marcadores genotoxicológicos para la evaluación de agricultores expuestos a plaguicidas organofosforados. An. Fac. Med. 2015; 76: 247-252spa
dcterms.referencesRyberg K.R. Gilliom R.J. Trends in pesticide concentrations and use for major rivers of the United States. Sci. Total Environ. 2015; 538: 431-444spa
dcterms.referencesSalazar S. Botello E. Viabilidad de semillas de Glycine max (l.) Utilizando la prueba de tetrazolio. RIAA. 2018; 9: 89-98spa
dcterms.referencesSalazar S. Maldonado H. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol. Environ. Saf. 2019; 183: 109528spa
dcterms.referencesSalazar S. Maldonado H. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci. Total Environ. 2020; 701: 134992spa
dcterms.referencesSalazar S. Quintero J. Cytotoxic evaluation of glyphosate, using Allium cepa L as bioindicator. Sci. Total Environ. 2020; 700spa
dcterms.referencesSalazar S. Quintero J. Rojas J. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere. 2020; 249spa
dcterms.referencesSalazar S. Quintero J. Botello E. Optimización de la prueba de tetrazolio para evaluar la vialidad en semillas de Solanum lycopersicum L. Ciencia Y Tecnología Agropecuaria. 2020; 21spa
dcterms.referencesSalazar S. Quintero J. Bustos V. Implementación de la prueba de tetrazolio en las semillas de Raphanus sativus L. Revista Facultad De Ciencias Básicas. 2020; 15: 7-15spa
dcterms.referencesSalazar-Mercado S.A. Torres-León C.A. Rojas-Suárez J.P. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol. Environ. Saf. 2019; 173: 71-76spa
dcterms.referencesShahwar D. Ansari M. Choudhary S. Induction of phenotypic diversity in mutagenized population of lentil (Lens culinaris Medik) by using heavy metal. Heliyon. 2019; 5e01722spa
dcterms.referencesSilveira G. Lima M. dos Reis G. Palmieri M. Andrade-Vieria L. Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere. 2017; 178: 359-367spa
dcterms.referencesSingh D. Roy B.K. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol. Plant. 2017; 39: 92spa
dcterms.referencesSrivastava A.K. Singh D. Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Sci. Rep. 2020; 10: 886spa
dcterms.referencesSumon K.A. Rico A. Ter Horst M.M.S. Van den Brink P.J. Haque M.M. Rashid H. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh. Sci. Total Environ. 2016; 568: 498-506spa
dcterms.referencesTriassi M. Nardone A. Giovinetti M.C. De Rosa E. Canzanella S. Sarnacchiaro P. Montuori P. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 2019; 678: 741-754spa
dcterms.referencesVerma S. Srivastava A. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - a biomarker based study. Chemosphere. 2018; 206: 248-254spa
dcterms.referencesWanwimolruk S. Kanchanamayoon O. Phopin K. Prachayasittikul V. Food safety in Thailand 2: pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries. Sci. Total Environ. 2015; 532: 447-455spa
dcterms.referencesWillison S.A. Daniel Stout I.I. Mysz A. Starr J. Tabor D. Wyrzykowska-Ceradini B. Snyder E.G. The impact of wipe sampling variables on method performance associated with indoor pesticide misuse and highly contaminated areas. Sci. Total Environ. 2019; 655: 539-546spa
dcterms.referencesWu H. Zhang R. Liu J. Guo Y. Ma E. Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: acrididae). Chemosphere. 2011; 83: 599-604spa
dcterms.referencesWu H. Zhang Y. Shi X. Zhang J. Ma E. Overexpression of Mn-superoxide dismutase in Oxya chinensis mediates increased malathion tolerance. Chemosphere. 2017; 181: 352-359spa
dc.identifier.doihttps://doi.org/10.1016/j.heliyon.2020.e04846
dc.publisher.placePaises Bajosspa
dc.relation.citationeditionVol.6 No.9.(2020)spa
dc.relation.citationendpage5spa
dc.relation.citationissue9 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume6spa
dc.relation.citesSalazar Mercado, S. A., & Quintero Caleño, J. D. (2020). Determination of malathion's toxic effect on Lens culinaris Medik cell cycle. Heliyon, 6(9 (2020)), 1-5.
dc.relation.ispartofjournalHeliyonspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalEcologyeng
dc.subject.proposalEnvironmental chemistryeng
dc.subject.proposalEnvironmental engineeringeng
dc.subject.proposalEnvironmental toxicologyeng
dc.subject.proposalPlant biologyeng
dc.subject.proposalSystems biologyeng
dc.subject.proposalMitotic indexeng
dc.subject.proposalLentileng
dc.subject.proposalCytotoxiceng
dc.subject.proposalGenotoxiceng
dc.subject.proposalRelative abnormality rateeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem