Mostrar el registro sencillo del ítem
Determination of malathion's toxic effect on Lens culinaris Medik cell cycle
dc.contributor.author | SALAZAR MERCADO, SEIR ANTONIO | |
dc.contributor.author | Quintero Caleño, Jesús David | |
dc.date.accessioned | 2021-11-12T14:05:22Z | |
dc.date.available | 2021-11-12T14:05:22Z | |
dc.date.issued | 2020-09-06 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/929 | |
dc.description.abstract | The present study aimed to determine the toxic effect of malathion pesticide on root growth, cell division and the chromosomal abnormalities frequency using the L. culinaris test. Initially, the lentil seeds were subjected to different doses of malathion (0.0 0.5, 1, 2.5, 5, 10, 15, 20, 25 and 30 mgL-1) and during 24, 48, and 72 h, the root length was measured. Subsequently, at 72h, the mitotic index, mitotic inhibition, and cellular abnormalities were calculated for all treatments. According to the obtained results, it was visualized that the root growth was inversely proportional to the concentration of malathion at all times of exposure. After 72h of exposure, the lowest values of the mitotic index and inhibition were presented at malathion concentrations 20, 25 and 30 mgL-1. Additionally, micronuclei cell abnormalities, metaphase sticky chromosomes, split chromosomes, nuclear lesions, irregular anaphase, anaphase bridges, binucleated cells, absence of nucleus and telophase bridge were observed. Finally, Malathion induced mitodepressive and cytotoxic effects in the meristematic cells of the L. culinaris root tip. A high frequency of abnormality was found in the micronuclei, which represented an indicator of a high degree of toxicity at the cellular level. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Heliyon | spa |
dc.relation.ispartof | Heliyon | |
dc.rights | 2405-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). | eng |
dc.source | https://www.cell.com/heliyon/fulltext/S2405-8440(20)31689-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844020316893%3Fshowall%3Dtrue | spa |
dc.title | Determination of malathion's toxic effect on Lens culinaris Medik cell cycle | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Abdelsalam N. Megeed A. Ali H.M. Salem M.Z.M. Al-Hayali M. Elshikh M.S. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Saf. 2018; 155: 76-85 | spa |
dcterms.references | Adam Z. Mikhael E. El-Ashry Z. Ehsan N. Ali R. Comparative cytogenetic and ultra-structural effects of storing dusted seeds of Vicia faba with insecticide malathion 1% and two insecticidal active plant products. World Appl. Sci. J. 2014; 32: 1423-1436 | spa |
dcterms.references | Akhgari M. Abdollahi M. Kebryaeezadeh A. Hosseini R. Sabzevari O. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 2003; 22: 205-211 | spa |
dcterms.references | Andrade-Vieira L. Bernardes P. Ferreira M. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: a molecular approach. Chemosphere. 2018; 208: 257-262 | spa |
dcterms.references | Bavcon M. Trebse P. Zupancic-Kralj L. Investigations of the determination and transformations of diazinon and Malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere. 2003; 50: 595-601 | spa |
dcterms.references | Bhatia A. Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. Actapathologica, microbiologica, etimmunologica Scandinavica. 2013; : 569-581 | spa |
dcterms.references | Braga A. Melo A. de Oliveira Santos J. Reis A. Torres de Lima T. et al. Toxicogenetic study of omeprazole and the modulatory effects of retinol palmitate and ascorbic acid on Allium cepa. Chemosphere. 2018; 204: 220-226 | spa |
dcterms.references | Bujagić I. Grujić S. Laušević M. Hofmann T. Micić V. Emerging contaminants in sediment core from the iron gate I reservoir on the Danube river. Sci.Total Environ. 2019 | spa |
dcterms.references | Climent M.J. Coscollà C. Lopez A. Barra R. Urrutia R. Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. Sci. Total Environ. 2019 | spa |
dcterms.references | Cortesía C. Marcano L. Marcano Elena Zapata-Vívenes Edgar Inmunotoxicidad de malatión y clorpirifos en la lombriz de tierra Eisenia sp. (Annelida: Oligochaeta). Saber. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente. 2015; 27: 530-536 | spa |
dcterms.references | de Souza R. de Souza C. Bueno O. Fontanetti S. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere. 2017; 168: 1093-1099 | spa |
dcterms.references | Doherty A. Bryce S.M. Bemis J.C. The in vitro micronucleus assay. Gen. Toxicol. Test. 2016; : 161-205 | spa |
dcterms.references | Elfikrie N. Ho Y. Zaidon S. Juahir H. Tan E. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 2020; 712: 136540 | spa |
dcterms.references | Fatma F. Verma S. Kamal A. Srivastava A. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere. 2018; 195: 864-870 | spa |
dcterms.references | Fisher S.W. Lydy M.J. Barger J. Landrum P.F. Quantitative structure-activity relationships for predicting the toxicity of pesticides in aquatic systems with sediment. Environ. Toxicol. Chem. 1993; 12: 1307-1318 | spa |
dcterms.references | Gallo M. Lawryk N. Organic phosphorus pesticides. in: Hayes W.J. Laws E.R. Handbook of Pesticide Toxicology. Academic Press, New York1991: 5-13 | spa |
dcterms.references | García-Medina S. Galar-Martínez M. Gómez-Oliván L. Torres-Bezaury R. Islas-Flores H. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): the carbamazepine case. Chemosphere. 2020; 253 | spa |
dcterms.references | Haq I. Kumar S. Raj A. Lohani M. Satyanarayana G. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere. 2017; 169: 642-650 | spa |
dcterms.references | Heikal Y.M. Şuţan N.A. Rizwan M. Elsayed A. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere. 2019; 125430 | spa |
dcterms.references | Houbraken M. Habimana V. Senaeve D. López-Dávila E. Spanoghe P. Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Sci. Total Environ. 2017; 576: 888-894 | spa |
dcterms.references | Kawahara J. Yoshinaga J. Yanagisawa Y. Dietary exposure to organophosphorus pesticides for young children in Tokyo and neighboring area. Sci. Total Environ. 2007; 378: 263-268 | spa |
dcterms.references | Khanna N. Sharma S. Allium cepa root chromosomal aberration assay: a review. Indian J. Pharm. Biol. 2013; 1: 105-119 | spa |
dcterms.references | Köck-Schulmeyer M. Villagrasa M. López de Alda M. Céspedes-Sánchez R. Ventura F. Barceló D. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci. Total Environ. 2013; 458–460: 466-476 | spa |
dcterms.references | Lessa L. Cariello F. Adsorção do paracetamol em carvão ativado: regressão da citotóxicidade e mutagênicidade no sistema Allium cepa. HÓRUS. 2017; 12: 44-54 | spa |
dcterms.references | Livanos P. Apostolakos P. Galatis B. Plant cell division. Plant Signal. Behav. 2012; 7: 771-778 | spa |
dcterms.references | Martins M. Ventura de Souza V. da Silva T. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium Cepa. Chemosphere. 2016; 148: 481-486 | spa |
dcterms.references | Meftaul I. Venkateswarlu K. Dharmarajan R. Annamalai P. Megharaj M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 2020; 711: 134612 | spa |
dcterms.references | Mendoza E. González-Ramírez C. Martínez-Saldaña M. Avelar-González F.J. Valdivia-Flores A. Aldana-Madrid M. Rodríguez-Olibarría G. Jaramillo-Juárez F. Estudio de exposición a malatión y cipermetrina y su relación con el riesgo de daño renal en habitantes del municipio de Calvillo Aguascalientes. México Revista Mexicana de Ciencias Farmacéuticas. 2015; 46: 62-72 | spa |
dcterms.references | Mhamdi A. Van Breusegem F. Reactive oxygen species in plant development. Development. 2018; 145: dev164376 | spa |
dcterms.references | Picó Y. Alvarez-Ruiz R. Alfarhan A.H. El-Sheikh M.A. Alobaid S.M. Barceló D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2018 | spa |
dcterms.references | Radović T. Grujić S. Petković A. Dimkić M. Laušević M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 2015; 187e4092 | spa |
dcterms.references | Reiler E. Jørs E. Bælum J. Huici O. Alvarez Caero M.M. Cedergreen N. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Sci. Total Environ. 2015; 527–528: 262-269 | spa |
dcterms.references | Relyea R. Edwards K. What doesn't kill you makes you sluggish: how sublethal pesticides alter predator–prey interactions. Copeia. 2010; 2010: 558-567 | spa |
dcterms.references | Reynoso M.S. Alvarez C. De la Cruz L. Escoto M. Sánchez J. Evaluation of the genotoxic activity of dicamba and atrazine herbicides in several Mexican and South American varieties of sweetcorn (Zea mays L.). Genet. Mol. Res. 2015; 14: 16585-16593 | spa |
dcterms.references | Rosales J. Uso de marcadores genotoxicológicos para la evaluación de agricultores expuestos a plaguicidas organofosforados. An. Fac. Med. 2015; 76: 247-252 | spa |
dcterms.references | Ryberg K.R. Gilliom R.J. Trends in pesticide concentrations and use for major rivers of the United States. Sci. Total Environ. 2015; 538: 431-444 | spa |
dcterms.references | Salazar S. Botello E. Viabilidad de semillas de Glycine max (l.) Utilizando la prueba de tetrazolio. RIAA. 2018; 9: 89-98 | spa |
dcterms.references | Salazar S. Maldonado H. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol. Environ. Saf. 2019; 183: 109528 | spa |
dcterms.references | Salazar S. Maldonado H. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci. Total Environ. 2020; 701: 134992 | spa |
dcterms.references | Salazar S. Quintero J. Cytotoxic evaluation of glyphosate, using Allium cepa L as bioindicator. Sci. Total Environ. 2020; 700 | spa |
dcterms.references | Salazar S. Quintero J. Rojas J. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere. 2020; 249 | spa |
dcterms.references | Salazar S. Quintero J. Botello E. Optimización de la prueba de tetrazolio para evaluar la vialidad en semillas de Solanum lycopersicum L. Ciencia Y Tecnología Agropecuaria. 2020; 21 | spa |
dcterms.references | Salazar S. Quintero J. Bustos V. Implementación de la prueba de tetrazolio en las semillas de Raphanus sativus L. Revista Facultad De Ciencias Básicas. 2020; 15: 7-15 | spa |
dcterms.references | Salazar-Mercado S.A. Torres-León C.A. Rojas-Suárez J.P. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol. Environ. Saf. 2019; 173: 71-76 | spa |
dcterms.references | Shahwar D. Ansari M. Choudhary S. Induction of phenotypic diversity in mutagenized population of lentil (Lens culinaris Medik) by using heavy metal. Heliyon. 2019; 5e01722 | spa |
dcterms.references | Silveira G. Lima M. dos Reis G. Palmieri M. Andrade-Vieria L. Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere. 2017; 178: 359-367 | spa |
dcterms.references | Singh D. Roy B.K. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol. Plant. 2017; 39: 92 | spa |
dcterms.references | Srivastava A.K. Singh D. Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Sci. Rep. 2020; 10: 886 | spa |
dcterms.references | Sumon K.A. Rico A. Ter Horst M.M.S. Van den Brink P.J. Haque M.M. Rashid H. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh. Sci. Total Environ. 2016; 568: 498-506 | spa |
dcterms.references | Triassi M. Nardone A. Giovinetti M.C. De Rosa E. Canzanella S. Sarnacchiaro P. Montuori P. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 2019; 678: 741-754 | spa |
dcterms.references | Verma S. Srivastava A. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - a biomarker based study. Chemosphere. 2018; 206: 248-254 | spa |
dcterms.references | Wanwimolruk S. Kanchanamayoon O. Phopin K. Prachayasittikul V. Food safety in Thailand 2: pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries. Sci. Total Environ. 2015; 532: 447-455 | spa |
dcterms.references | Willison S.A. Daniel Stout I.I. Mysz A. Starr J. Tabor D. Wyrzykowska-Ceradini B. Snyder E.G. The impact of wipe sampling variables on method performance associated with indoor pesticide misuse and highly contaminated areas. Sci. Total Environ. 2019; 655: 539-546 | spa |
dcterms.references | Wu H. Zhang R. Liu J. Guo Y. Ma E. Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: acrididae). Chemosphere. 2011; 83: 599-604 | spa |
dcterms.references | Wu H. Zhang Y. Shi X. Zhang J. Ma E. Overexpression of Mn-superoxide dismutase in Oxya chinensis mediates increased malathion tolerance. Chemosphere. 2017; 181: 352-359 | spa |
dc.identifier.doi | https://doi.org/10.1016/j.heliyon.2020.e04846 | |
dc.publisher.place | Paises Bajos | spa |
dc.relation.citationedition | Vol.6 No.9.(2020) | spa |
dc.relation.citationendpage | 5 | spa |
dc.relation.citationissue | 9 (2020) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 6 | spa |
dc.relation.cites | Salazar Mercado, S. A., & Quintero Caleño, J. D. (2020). Determination of malathion's toxic effect on Lens culinaris Medik cell cycle. Heliyon, 6(9 (2020)), 1-5. | |
dc.relation.ispartofjournal | Heliyon | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Ecology | eng |
dc.subject.proposal | Environmental chemistry | eng |
dc.subject.proposal | Environmental engineering | eng |
dc.subject.proposal | Environmental toxicology | eng |
dc.subject.proposal | Plant biology | eng |
dc.subject.proposal | Systems biology | eng |
dc.subject.proposal | Mitotic index | eng |
dc.subject.proposal | Lentil | eng |
dc.subject.proposal | Cytotoxic | eng |
dc.subject.proposal | Genotoxic | eng |
dc.subject.proposal | Relative abnormality rate | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |