Mostrar el registro sencillo del ítem


Angström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombia

dc.contributor.authorContreras Sepulveda, Wilmer
dc.contributor.authorGalban Pineda, Migan Giuseppe
dc.contributor.authorBustos Marquez, Luis Fernando
dc.contributor.authorSepúlveda, Sergio
dc.contributor.authorRamirez Mateus, Jhon Jairo
dc.date.accessioned2021-11-11T22:42:45Z
dc.date.available2021-11-11T22:42:45Z
dc.date.issued2021-02-15
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/919
dc.description.abstractThe document shows the application of the empirical Angström-Prescott model in different places in Norte de Santander, Colombia. The model estimates solar radiation from hours of sunlight, at a site where brightness and solar radiation are measured. The data were obtained from the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM; algorithms were developed in RStudio to process and ana-lyze the information. The model establishes a linear relationship between solar radiation and the hours of sunlight, in a specific geographic location. Therefore, regression analyzes were performed for three different sites, using histori-cal records of brightness and solar radiation, ob-taining the R-squared coefficients of: 0.73, 0.78,and 0.42. The models were then extrapolated to nearby regions with solar brightness records, but without solar radiation data, to obtain an estimate of radiation at these locations. Finally, a database was created with monthly aver-age information on solar radiation for various subregions of Norte de Santander, which can be used for the design and implementation of photovoltaic systems.eng
dc.description.abstractEl documento muestra la aplicación del modelo empírico de Angström-Prescott en diferentes lugares de Norte de Santander, Colombia. El modelo estima la radiación solar a partir de las horas de brillo solar, en un sitio donde se miden el brillo y la radiación solar. Los datos se obtuvieron del Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM; se desarrollaron algoritmos en RStudio para procesar y analizar la información. El modelo establece una relación lineal entre la radiación solar y las horas de brillo solar, en un lugar geográfico específico. Por ello, se realizaron análisis de regresión para tres sitios diferentes, usando registros históricos de brillo y radiación solar, obteniendo los coeficientes R-cuadrado de: 0.73, 0.78, y 0.42. Luego, los modelos fueron extrapolados a regiones cercanas con registros de brillo solar, pero sin datos de radiación solar, para obtener una estimación de la radiación en estos lugares. Finalmente, se creó una base de datos con información promedio mensual de radiación solar para varias subregiones de Norte de Santander, que puede utilizarse para el diseño e implementación de sistemas fotovoltaicos.spa
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista de Investigación Desarrollo e Innovación: RIDIspa
dc.relation.ispartofRevista de Investigación Desarrollo e Innovación: RIDI
dc.rightsLos artículos aquí publicados están protegidos bajo una licencia Licencia Creative Commons Atribución 4.0 Internacional.spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/12765spa
dc.titleModelo empírico de Angström-Prescott para estimar la radiación solar en Norte de Santander, Colombiaspa
dc.titleAngström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesAkinoǧlu, B. G., & Ecevit, A. (1990). A further comparison and discussion of sunshine-based models to estimate global solar radiation. Energy, 15 (10), 865–872. https://doi.org/10.1016/0360-5442(90)90068-Dspa
dcterms.referencesAlmorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30 (6), 931–936. https://doi.org/10.1016/j.renene.2004.08.002spa
dcterms.referencesAsilevi, P. J., Quansah, E., Amekudzi, L. K., Annor, T., & Klutse, N. A. B. (2019). Modeling the spatial distribution of Global Solar Radiation (GSR) over Ghana using the Ångström-Prescott sunshine duration model. Scientific African, 4, e00094. https://doi.org/10.1016/j.sciaf.2019.e00094spa
dcterms.referencesBasaran, K., Özçift, A., & Kılınç, D. (2019). A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm. Arabian Journal for Science and Engineering, 44 (8), 7159–7171. https://doi.org/10.1007/s13369-019-03841-7spa
dcterms.referencesChelbi, M., Gagnon, Y., & Waewsak, J. (2015). Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia. Energy Conversion and Management, 101, 203–215. https://doi.org/10.1016/j.enconman.2015.04.052spa
dcterms.referencesDumas, A., Andrisani, A., Bonnici, M., Graditi, G., Leanza, G., Madonia, M., & Trancossi, M. (2015). A new correlation between global solar energy radiation and daily temperature variations. Solar Energy, 116, 117–124. https://doi.org/10.1016/j.solener.2015.04.002spa
dcterms.referencesHough, T. P. (Ed.). (2007). Recent developments in solar energy. Nova Science Publishers, Inc.spa
dcterms.referencesHulstrom, R. L. (Ed.). (1989). Solar Resources. The MIT press.spa
dcterms.referencesJamil, B., & Bellos, E. (2019). Development of empirical models for estimation of global solar radiation exergy in India. Journal of Cleaner Production, 207, 1–16. https://doi.org/10.1016/j.jclepro.2018.09.246spa
dcterms.referencesLuna-Carlosama, C., Jiménez-García, F., Moreno-Chuquen, R., & Mulcué-Nieto, L. (2020). Potencial de irradiación solar para generar electricidad en el departamento del Putumayo de Colombia. Revista UIS Ingenierías, 19 (3), 153–161. https://doi.org/10.18273/revuin.v19n3-2020015spa
dcterms.referencesMaechler, M., Stahel, W., Ruckstuhl, A., Keller, C., Halvorsen, K., Houser, A., Buser, C., Gygax, L., Venables, B., Plate, T., Flckiger, I., Wolbers, M., Keller, M., & Dudoit, S. (2016). sfsmisc: Utilities from “Seminar fuer Statistik” ETH Zurich R package version 1.1-0. doi: https://cran.r-project.org/package=sfsmiscspa
dcterms.referencesMirai Solutions GmbH. (2017). XLConnect: Excel Connector for R (R package version 0.2-13).spa
dcterms.referencesNoriega-Angarita, E., Sousa-Santos, V., Quintero-Duran, M., & Gil-Arrieta, C. (2016). Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks. International Journal of Engineering and Technology, 8 (4), 1817–1825. https://doi.org/10.21817/ijet/2016/v8i4/160804234spa
dcterms.referencesPaulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström-Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62, 495–506. https://doi.org/10.1016/j.rser.2016.04.012spa
dcterms.referencesQuej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016). Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448–456. https://doi.org/10.1016/j.enconman.2015.12.050spa
dcterms.referencesSmets, A., Jäger, K., Isabella, O., VanSwaaij, R., & Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems 1st ed. UIT Cambridge Ltd.spa
dcterms.referencesUnidad de Planeación Minero Energética, UPME. (2015). Integración de las energías renovables no convencionales en Colombia. Recuperado de: http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdfspa
dcterms.referencesUrrego-Ortiz, J., Martínez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and day-ahead forecasting of hourly solar radiation in Medellín, Colombia. Energies, 12 (22), 4402. https://doi.org/10.3390/en12224402spa
dcterms.referencesVélez-Pereira, A. M., Vergara-Vásquez, E. L., Barraza-Coronell, W. D., & Agudelo-Yepes, D. C. (2015). Evaluación de un modelo estadístico para estimar la radiación solar en Magdalena, Colombia. TecnoLógicas, 18 (35), 35–44. https://doi.org/10.22430/22565337.196spa
dcterms.referencesWang, J., Wang, E., Yin, H., Feng, L., & Zhao, Y. (2015). Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10. https://doi.org/10.1016/j.fcr.2015.02.014spa
dcterms.referencesYaniktepe, B., & Genc, Y. A. (2015). Establishing new model for predicting the global solar radiation on horizontal surface. International Journal of Hydrogen Energy, 40 (44), 15278–15283. https://doi.org/10.1016/j.ijhydene.2015.02.064spa
dcterms.referencesZeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14 (6), 1–27. http://arxiv.org/abs/math/0505527spa
dc.coverage.countryColombia
dc.coverage.regionNorte de Santander
dc.identifier.doihttps://doi.org/10.19053/20278306.v11.n2.2021.12765
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.11 No.2.(2021)spa
dc.relation.citationendpage428spa
dc.relation.citationissue2(2021)spa
dc.relation.citationstartpage413spa
dc.relation.citationvolume11spa
dc.relation.citesContreras-Sepúlveda, W., Galban-Pineda, M. G., Bustos-Márquez, L. F., Sepúlveda-Mora, S. B., & Ramírez-Mateus, J. J. (2021). Modelo empírico de Angström-Prescott para estimar la radiación solar en Norte de Santander, Colombia. Revista de Investigación, Desarrollo e Innovación, 11(2), 413–428. https://doi.org/10.19053/20278306.v11.n2.2021.12765
dc.relation.ispartofjournalRevista de Investigación Desarrollo e Innovación: RIDIspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalsolar radiationeng
dc.subject.proposalAngström-Prescott equationeng
dc.subject.proposalempirical model,eng
dc.subject.proposalsolar brightnesseng
dc.subject.proposalradiación solarspa
dc.subject.proposalecuación de Angström-Prescott,spa
dc.subject.proposalmodelo empíricospa
dc.subject.proposalbrillo solarspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem