Mostrar el registro sencillo del ítem
Modelo empírico de Angström-Prescott para estimar la radiación solar en Norte de Santander, Colombia
Angström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombia
dc.contributor.author | Contreras Sepulveda, Wilmer | |
dc.contributor.author | Galban Pineda, Migan Giuseppe | |
dc.contributor.author | Bustos Marquez, Luis Fernando | |
dc.contributor.author | Sepúlveda, Sergio | |
dc.contributor.author | Ramirez Mateus, Jhon Jairo | |
dc.date.accessioned | 2021-11-11T22:42:45Z | |
dc.date.available | 2021-11-11T22:42:45Z | |
dc.date.issued | 2021-02-15 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/919 | |
dc.description.abstract | The document shows the application of the empirical Angström-Prescott model in different places in Norte de Santander, Colombia. The model estimates solar radiation from hours of sunlight, at a site where brightness and solar radiation are measured. The data were obtained from the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM; algorithms were developed in RStudio to process and ana-lyze the information. The model establishes a linear relationship between solar radiation and the hours of sunlight, in a specific geographic location. Therefore, regression analyzes were performed for three different sites, using histori-cal records of brightness and solar radiation, ob-taining the R-squared coefficients of: 0.73, 0.78,and 0.42. The models were then extrapolated to nearby regions with solar brightness records, but without solar radiation data, to obtain an estimate of radiation at these locations. Finally, a database was created with monthly aver-age information on solar radiation for various subregions of Norte de Santander, which can be used for the design and implementation of photovoltaic systems. | eng |
dc.description.abstract | El documento muestra la aplicación del modelo empírico de Angström-Prescott en diferentes lugares de Norte de Santander, Colombia. El modelo estima la radiación solar a partir de las horas de brillo solar, en un sitio donde se miden el brillo y la radiación solar. Los datos se obtuvieron del Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM; se desarrollaron algoritmos en RStudio para procesar y analizar la información. El modelo establece una relación lineal entre la radiación solar y las horas de brillo solar, en un lugar geográfico específico. Por ello, se realizaron análisis de regresión para tres sitios diferentes, usando registros históricos de brillo y radiación solar, obteniendo los coeficientes R-cuadrado de: 0.73, 0.78, y 0.42. Luego, los modelos fueron extrapolados a regiones cercanas con registros de brillo solar, pero sin datos de radiación solar, para obtener una estimación de la radiación en estos lugares. Finalmente, se creó una base de datos con información promedio mensual de radiación solar para varias subregiones de Norte de Santander, que puede utilizarse para el diseño e implementación de sistemas fotovoltaicos. | spa |
dc.format.extent | 15 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Revista de Investigación Desarrollo e Innovación: RIDI | spa |
dc.relation.ispartof | Revista de Investigación Desarrollo e Innovación: RIDI | |
dc.rights | Los artículos aquí publicados están protegidos bajo una licencia Licencia Creative Commons Atribución 4.0 Internacional. | spa |
dc.source | https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/12765 | spa |
dc.title | Modelo empírico de Angström-Prescott para estimar la radiación solar en Norte de Santander, Colombia | spa |
dc.title | Angström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombia | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Akinoǧlu, B. G., & Ecevit, A. (1990). A further comparison and discussion of sunshine-based models to estimate global solar radiation. Energy, 15 (10), 865–872. https://doi.org/10.1016/0360-5442(90)90068-D | spa |
dcterms.references | Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30 (6), 931–936. https://doi.org/10.1016/j.renene.2004.08.002 | spa |
dcterms.references | Asilevi, P. J., Quansah, E., Amekudzi, L. K., Annor, T., & Klutse, N. A. B. (2019). Modeling the spatial distribution of Global Solar Radiation (GSR) over Ghana using the Ångström-Prescott sunshine duration model. Scientific African, 4, e00094. https://doi.org/10.1016/j.sciaf.2019.e00094 | spa |
dcterms.references | Basaran, K., Özçift, A., & Kılınç, D. (2019). A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm. Arabian Journal for Science and Engineering, 44 (8), 7159–7171. https://doi.org/10.1007/s13369-019-03841-7 | spa |
dcterms.references | Chelbi, M., Gagnon, Y., & Waewsak, J. (2015). Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia. Energy Conversion and Management, 101, 203–215. https://doi.org/10.1016/j.enconman.2015.04.052 | spa |
dcterms.references | Dumas, A., Andrisani, A., Bonnici, M., Graditi, G., Leanza, G., Madonia, M., & Trancossi, M. (2015). A new correlation between global solar energy radiation and daily temperature variations. Solar Energy, 116, 117–124. https://doi.org/10.1016/j.solener.2015.04.002 | spa |
dcterms.references | Hough, T. P. (Ed.). (2007). Recent developments in solar energy. Nova Science Publishers, Inc. | spa |
dcterms.references | Hulstrom, R. L. (Ed.). (1989). Solar Resources. The MIT press. | spa |
dcterms.references | Jamil, B., & Bellos, E. (2019). Development of empirical models for estimation of global solar radiation exergy in India. Journal of Cleaner Production, 207, 1–16. https://doi.org/10.1016/j.jclepro.2018.09.246 | spa |
dcterms.references | Luna-Carlosama, C., Jiménez-García, F., Moreno-Chuquen, R., & Mulcué-Nieto, L. (2020). Potencial de irradiación solar para generar electricidad en el departamento del Putumayo de Colombia. Revista UIS Ingenierías, 19 (3), 153–161. https://doi.org/10.18273/revuin.v19n3-2020015 | spa |
dcterms.references | Maechler, M., Stahel, W., Ruckstuhl, A., Keller, C., Halvorsen, K., Houser, A., Buser, C., Gygax, L., Venables, B., Plate, T., Flckiger, I., Wolbers, M., Keller, M., & Dudoit, S. (2016). sfsmisc: Utilities from “Seminar fuer Statistik” ETH Zurich R package version 1.1-0. doi: https://cran.r-project.org/package=sfsmisc | spa |
dcterms.references | Mirai Solutions GmbH. (2017). XLConnect: Excel Connector for R (R package version 0.2-13). | spa |
dcterms.references | Noriega-Angarita, E., Sousa-Santos, V., Quintero-Duran, M., & Gil-Arrieta, C. (2016). Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks. International Journal of Engineering and Technology, 8 (4), 1817–1825. https://doi.org/10.21817/ijet/2016/v8i4/160804234 | spa |
dcterms.references | Paulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström-Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62, 495–506. https://doi.org/10.1016/j.rser.2016.04.012 | spa |
dcterms.references | Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016). Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448–456. https://doi.org/10.1016/j.enconman.2015.12.050 | spa |
dcterms.references | Smets, A., Jäger, K., Isabella, O., VanSwaaij, R., & Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems 1st ed. UIT Cambridge Ltd. | spa |
dcterms.references | Unidad de Planeación Minero Energética, UPME. (2015). Integración de las energías renovables no convencionales en Colombia. Recuperado de: http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf | spa |
dcterms.references | Urrego-Ortiz, J., Martínez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and day-ahead forecasting of hourly solar radiation in Medellín, Colombia. Energies, 12 (22), 4402. https://doi.org/10.3390/en12224402 | spa |
dcterms.references | Vélez-Pereira, A. M., Vergara-Vásquez, E. L., Barraza-Coronell, W. D., & Agudelo-Yepes, D. C. (2015). Evaluación de un modelo estadístico para estimar la radiación solar en Magdalena, Colombia. TecnoLógicas, 18 (35), 35–44. https://doi.org/10.22430/22565337.196 | spa |
dcterms.references | Wang, J., Wang, E., Yin, H., Feng, L., & Zhao, Y. (2015). Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10. https://doi.org/10.1016/j.fcr.2015.02.014 | spa |
dcterms.references | Yaniktepe, B., & Genc, Y. A. (2015). Establishing new model for predicting the global solar radiation on horizontal surface. International Journal of Hydrogen Energy, 40 (44), 15278–15283. https://doi.org/10.1016/j.ijhydene.2015.02.064 | spa |
dcterms.references | Zeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14 (6), 1–27. http://arxiv.org/abs/math/0505527 | spa |
dc.coverage.country | Colombia | |
dc.coverage.region | Norte de Santander | |
dc.identifier.doi | https://doi.org/10.19053/20278306.v11.n2.2021.12765 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.11 No.2.(2021) | spa |
dc.relation.citationendpage | 428 | spa |
dc.relation.citationissue | 2(2021) | spa |
dc.relation.citationstartpage | 413 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Contreras-Sepúlveda, W., Galban-Pineda, M. G., Bustos-Márquez, L. F., Sepúlveda-Mora, S. B., & Ramírez-Mateus, J. J. (2021). Modelo empírico de Angström-Prescott para estimar la radiación solar en Norte de Santander, Colombia. Revista de Investigación, Desarrollo e Innovación, 11(2), 413–428. https://doi.org/10.19053/20278306.v11.n2.2021.12765 | |
dc.relation.ispartofjournal | Revista de Investigación Desarrollo e Innovación: RIDI | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | solar radiation | eng |
dc.subject.proposal | Angström-Prescott equation | eng |
dc.subject.proposal | empirical model, | eng |
dc.subject.proposal | solar brightness | eng |
dc.subject.proposal | radiación solar | spa |
dc.subject.proposal | ecuación de Angström-Prescott, | spa |
dc.subject.proposal | modelo empírico | spa |
dc.subject.proposal | brillo solar | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |