Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Mesa, Richard Samir
dc.contributor.authorMORENO GARCIA, FRANCISCO ERNESTO
dc.contributor.authorCastro Casadiego, Sergio
dc.contributor.authorMedina Delgado, Byron
dc.date.accessioned2021-11-11T22:27:05Z
dc.date.available2021-11-11T22:27:05Z
dc.date.issued2021-05-12
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/918
dc.description.abstractIn this project, a Fuzzy control system is proposed in an industrial process training module with two independent systems between them, one thermal and the other pneumatic. The control algorithm is developed in Python language v3.6 executed by a Raspberry Pi B+, both controllers depend on the error and change in error that are updated in times of 2 s and 1 s, for temperature and pressure respectively, communication with the plants uses A/D and D/A converters, the thermal Fuzzy was analyzed with three temperature references [50,100 and 150]°C, with a rise time of 191 s, 360 s and 505 s; steady state error of 5.5%, 0.7% y 0.7%, in the pneumatic system the speed of change between references is evaluated from 10 psi to 15 psi varying the activation of the compressor at the beginning of the experiments, the settling times obtained are 111 s and 106 s, with the compressor off the result is 116 s and 88 s, besides a maximum excess of 13% with inherent oscillations to the type system that are in an acceptable range.eng
dc.description.abstractEn este proyecto, se propone un sistema de control Fuzzy en un módulode entrenamiento de procesos industriales con dos sistemas independientesentre sí, uno térmico y otro neumático, el algoritmo de control se desarro-lla en lenguaje Python v3.6 ejecutado por una Raspberry Pi B+, amboscontroladores dependen del error y cambio en el error que se actualizanen tiempos de 2 s y 1 s, para temperatura y presión respectivamente, lacomunicación con las plantas emplea conversores A/D y D/A, el Fuzzytérmico se analizo con tres referencias de temperatura [50,100 y 150]◦C,con un tiempo de subida de 191 s, 360 s y 505 s; error de estado estaciona-rio de 5.5 %, 0.7 % y 0.7 %, en el sistema neumático se evalúo la velocidadde cambio entre referencias de 10 psi a 15 psi variando la activación delcompresor al inicio de los experimentos, los tiempos de asentamiento quese obtienen son 111 s y 106 s, con el compresor apagado el resultado esde 116 s y 88 s, además de un sobrepaso máximo de 13 % con oscilacionesinherentes al tipo sistema que se encuentran en un rango aceptable.spa
dc.format.extent24 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIngeniería y Cienciaspa
dc.relation.ispartofIngeniería y Ciencia
dc.rights© 2018 OJS theme design by: openjournalsystems.comeng
dc.sourcehttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6555spa
dc.titleExperimental development of fuzzy controllers for thermal and pneumatic processeseng
dc.typeArtículo de revistaspa
dcterms.referencesA. C. Solé, Instrumentación industrial. Alfaomega, 2011, ch. 1, pp. 1–2.spa
dcterms.referencesH. J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, J. L. Jerez, G. Stathopoulos, and C. Jones, “Embedded optimization methods for industrial automatic control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13 194–13 209, 2017, https://doi.org/10.1016/j.ifacol.2017.08.1946.spa
dcterms.referencesF. Ponci, A. Sadu, R. Uhl, M. Mirz, A. Angioni, and A. Monti, “Instrumentation and measurement testing in the real-time lab for automation of complex power systems,” IEEE Instrumentation & Measurement Magazine, vol. 21, no. 1, pp. 17–24, 2018, https://doi.org/10.1109/MIM.2018.8278805.spa
dcterms.referencesE. Harper, Elementos del control de procesos. Limusa noriega editores, 2015, ch. 1, pp. 11–51.spa
dcterms.referencesJ. Huo, F. T. Chan, C. K. Lee, J. O. Strandhagen, and B. Niu, “Smart control of the assembly process with a fuzzy control system in the context of industry 4.0,” Advanced Engineering Informatics, vol. 43, p. 101031, 2020.spa
dcterms.referencesJ. L. Riviello, E. L. Riviello, J. H. Reyes, and C. G. Escarpeta, “Implementation of fuzzy controller in different embedded systems,” in 2019 IEEE International Conference on Engineering Veracruz (ICEV), vol. 1. IEEE, 2019, pp. 1–4, https://doi.org/10.1109/ICEV.2019.8920584.spa
dcterms.referencesR. P. FOUNDATION. (2015) Raspberry pi 2 model b. https://www. raspberrypi.org/products/raspberry-pi-2-model-b/spa
dcterms.referencesJ. Li, Q. Xiong, K. Wang, X. Shi, and S. Liang, “A recurrent self-evolving fuzzy neural network predictive control for microwave drying process,” Drying Technology, vol. 34, no. 12, pp. 1434–1444, 2016, https://doi.org/10.1080/07373937.2015. 1122612.spa
dcterms.referencesJ. M. Celis-Peñaranda, C. D. Escobar-Amado, S. B. Sepúlveda-Mora, S. A. Castro-Casadiego, B. Medina-Delgado, and J. J. Ramírez-Mateus, “Control adaptativo para optimizar una intersección semafórica basado en un sistema embebido,” Ingeniería y ciencia, vol. 12, no. 24, pp. 169–193, 2016, https://doi.org/10. 17230/ingciencia.12.24.8.spa
dcterms.referencesP. Navdeti, S. Parte, P. Talashilkar, J. Patil, and V. Khairnar, “Patient parameter monitoring system using raspberry pi,” International Journal Of Engineering And Computer Science, vol. 5, no. 3, 2016, https://doi.org/10.1109/ICCTIDE. 2016.7725378.spa
dcterms.referencesG. Macias-Bobadilla, J. Becerra-Ruiz, A. A. Estévez-Bén, and J. Rodríguez- Reséndiz, “Fuzzy control-based system feed-back by obd-ii data acquisition for complementary injection of hydrogen into internal combustion engines,” International Journal of Hydrogen Energy, 2020, https://doi.org/10.1016/j.ijhydene.2020. 07.084.spa
dcterms.referencesJ. R. García-Martínez, E. E. Cruz-Miguel, R. V. Carrillo-Serrano, F. Mendoza-Mondragón, M. Toledano-Ayala, and J. Rodríguez-Reséndiz, “A pid-type fuzzy logic controller-based approach for motion control applications,” Sensors, vol. 20, no. 18, p. 5323, 2020, https://doi.org/10.3390/s20185323. 99spa
dcterms.referencesU. Zalabarria, E. Irigoyen, R. Martinez, M. Larrea, and A. Salazar-Ramirez, “A low-cost, portable solution for stress and relaxation estimation based on a real-time fuzzy algorithm,” IEEE Access, vol. 8, pp. 74 118–74 128, 2020, https://doi.org/10.1109/ACCESS.2020.2988348.spa
dcterms.referencesH. Fakhrurroja, S. A. Mardhotillah, O. Mahendra, A. Munandar, M. I. Rizqyawan, and R. P. Pratama, “Automatic ph and humidity control system for hydroponics using fuzzy logic,” in 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA). IEEE, 2019, pp. 156–161, https://doi.org/10.1109/IC3INA48034.2019.8949590.spa
dcterms.referencesM. J. Villaseñor-Aguilar, J. E. Botello-Álvarez, F. J. Pérez-Pinal, M. Cano- Lara, M. F. León-Galván, M.-G. Bravo-Sánchez, and A. I. Barranco- Gutierrez, “Fuzzy classification of the maturity of the tomato using a vision system,” Journal of Sensors, vol. 2019, 2019, https://doi.org/10.1155/2019/3175848.spa
dcterms.referencesM. Das, V. Sivakami, A. Pal, and B. Vasuki, “Analog-digital conditioning circuit for rtd temperature measurement,” in 2018 15th IEEE India Council International Conference (INDICON). IEEE, 2018, pp. 1–5, https://doi.org/10.1109/ INDICON45594.2018.8987077spa
dcterms.referencesA. Rai and D. Yadav, “Evaluating wiring configurations for rtd sensor in temperature measurement,” I-Manager’s Journal on Electronics Engineering, vol. 10, no. 1, p. 1, 2019, https://doi.org/10.26634/jele.10.1.16422.spa
dcterms.referencesRTD-to-Digital Converter, maxim integrated, 07 2015, rev. 3.spa
dcterms.referencesTransmisor de presión para aplicaciones generales industriales. Tipo MBS 3000 y MBS 3050, Danfoss, 09 2013.spa
dcterms.referencesF. Kurokawa and S. Hattori, “Single stage ad-dc full-bridge converter for battery charger,” in 2015 IEEE International Telecommunications Energy Conference (INTELEC). IEEE, 2015, pp. 1–6, https://doi.org/10.1109/INTLEC.2015. 7572402.spa
dcterms.referencesR. Skrbina and D. Team, “Filtered pwm digital to analog converter,” Design team, vol. 10, no. 4, 2015.spa
dcterms.referencesE. A. W. Hung T. Nguyen, Carol L. Walker, FUZZY MODELING AND CONTROL. CRC Press, 2018, ch. 13, pp. 385–399.spa
dcterms.referencesH.-R. Lin, B.-Y. Cao, and Y.-z. Liao, “Fuzzy control,” in Fuzzy Sets Theory Preliminary. Springer, 2018, pp. 73–108, https://doi.org/10.1007/978-3-319-70749-5_3.spa
dcterms.referencesG. Yang, J.-M. Du, X.-Y. Fu, and B.-R. Li, “Asymmetric fuzzy control of a positive and negative pneumatic pressure servo system,” Chinese Journal of Mechanical Engineering, vol. 30, no. 6, pp. 1438–1446, 2017, https://doi.org/10.1007/ s10033-017-0194-1.spa
dcterms.referencesC.Wang, “A study of membership functions on mamdani-type fuzzy inference system for industrial decision-making,” 2015.spa
dcterms.referencesO. A. M. Ali, A. Y. Ali, and B. S. Sumait, “Comparison between the effects of different types of membership functions on fuzzy logic controller performance,” International Journal, vol. 76, pp. 76–83, 2015, Corpus ID:736797.spa
dcterms.referencesY.-J. Wang, “Ranking triangle and trapezoidal fuzzy numbers based on the relative preference relation,” Applied mathematical modelling, vol. 39, no. 2, pp. 586–599, 2015, https://doi.org/10.1016/j.apm.2014.06.011.spa
dcterms.referencesS. B. Zdenko Kovaˆcic, Fuzzy Controller Design. CRC Press, 2006, ch. 2, pp. 9–70.spa
dcterms.referencesD. K. Sambariya and R. Prasad, “Selection of membership functions based on fuzzy rules to design an efficient power system stabilizer,” International Journal of Fuzzy Systems, vol. 19, no. 3, pp. 813–828, 2017, https://doi.org/10.1007/ s40815-016-0197-6spa
dcterms.referencesD. Vyas, Y. Misra, and H. Kamath, “Comparison and analysis of defuzzification methods of a fuzzy controller to maintain the cane level during cane juice extraction,” in 2015 International Conference on Signal Processing and Communication Engineering Systems. IEEE, 2015, pp. 102–106, https://doi.org/10.1109/SPACES.2015.7058225.spa
dcterms.referencesJ. Warner, J. Sexauer, scikit fuzzy, twmeggs, alexsavio, A. Unnikrishnan, G. Castelão, F. A. Pontes, T. Uelwer, pd2f, laurazh, F. Batista, alexbuy, W. V. den Broeck, W. Song, T. G. Badger, R. A. M. Pérez, J. F. Power, H. Mishra, G. O. Trullols, A. Hörteborn, and 99991, “scikit-fuzzy/scikitfuzzy: Scikit-fuzzy 0.4.2,” Nov. 2019, https://doi.org/10.5281/zenodo.3541384.spa
dcterms.referencesS. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, A. Stuart et al., “Importance sampling: Intrinsic dimension and computational cost,” Statistical Science, vol. 32, no. 3, pp. 405–431, 2017, https://doi.org/10.1214/17-STS611.spa
dcterms.referencesD. Kim, J. Cai, K. B. Ariyur, and J. E. Braun, “System identification for building thermal systems under the presence of unmeasured disturbances in closed loop operation: Lumped disturbance modeling approach,” Building and Environment, vol. 107, pp. 169–180, 2016, https://doi.org/10.1016/j.buildenv.2016. 07.007.spa
dcterms.referencesD. S. Bhandare and N. Kulkarni, “Performances evaluation and comparison of pid controller and fuzzy logic controller for process liquid level control,” in 2015 15th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2015, pp. 1347–1352, https://doi.org/10.1109/ICCAS.2015.7364848spa
dc.identifier.doihttps://doi.org/10.17230/ingciencia.17.33.5
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.17 No.33.(2021)spa
dc.relation.citationendpage120spa
dc.relation.citationissue33(2021)spa
dc.relation.citationstartpage97spa
dc.relation.citationvolume17spa
dc.relation.citesHernandez-Mesa, R., Moreno-Garcia, F., Castro-Casadiego, S., & Medina-Delgado, B. (2021). Experimental Development of Fuzzy Controllers for Thermal and Pneumatic Processes. Ingeniería Y Ciencia, 17(33), 97-120. https://doi.org/10.17230/ingciencia.17.33.5
dc.relation.ispartofjournalIngeniería y Cienciaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalRaspberry Pieng
dc.subject.proposalcontrol systemeng
dc.subject.proposalinstrumentationeng
dc.subject.proposalfuzzyeng
dc.subject.proposalPythoneng
dc.subject.proposalsistema de controlspa
dc.subject.proposalinstrumentaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem