Mostrar el registro sencillo del ítem
A model for an interconnected photovoltaic system using an off-grid inverter as a reference node in island mode
dc.contributor.author | Cardozo Sarmiento, Darwin Orlando | |
dc.contributor.author | Pardo, Mauricio | |
dc.date.accessioned | 2021-11-10T16:13:16Z | |
dc.date.available | 2021-11-10T16:13:16Z | |
dc.date.issued | 2019-11-12 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/844 | |
dc.description.abstract | This paper presents the results of a research work where an intentional connection is made in island mode, a low power isolated photovoltaic system (300W) is used as a reference for an interconnected photovoltaic system (1,270W). The objective is to configure an islanded system that does not require the main grid to generate the synchronization parameters for grid-tie inverters to operate. This work presents suitable building block models (converters, inverters and LCL filters) that can be used to design of a control scheme that can maintain performance parameters such as % THD and RMS level of the voltage in the load according to the IEEE-Std-1159-1995 standard. The control system is based on an intelligent controller using the technique of artificial neural networks, for the activation and deactivation of ballast loads to maintain the voltage level at 120VRMS and balance the active power produced by the interconnected system and the active power consumed by the load. In addition to the mentioned power-system performance parameters, the work focuses on evaluating response times of the intelligent controller to number of ballasts loads according to the power consumed by the load. The tests are made in scenarios of stability and variation in solar radiation, the power produced by the interconnected system and the power consumed by the load. The complete system can be configured with standard commercial devices which do not require advanced or complex operation techniques in inverters, converters and filters. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | IEEE Latin America Transactions | spa |
dc.relation.ispartof | IEEE Latin America Transactions | |
dc.rights | © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions. | eng |
dc.source | https://ieeexplore.ieee.org/document/8896826 | spa |
dc.title | A model for an interconnected photovoltaic system using an off-grid inverter as a reference node in island mode | eng |
dc.type | Artículo de revista | spa |
dcterms.references | K. Dubey and M. T. Shah, “DESIGN AND SIMULATION OF SOLAR PV SYSTEM,” in Proc. ICACDOT, pp. 568–573, 2016. | spa |
dcterms.references | C. T. Mancera, “Integración de las energías renovables no convencionales en Colombia,” UPME, Bogotá, Colombia, Rep. no ATN/FM-128-25-CO, 2015. [Online]. Available: http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renova bles/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf | spa |
dcterms.references | M. Konal, İ. Öz, C. Polat and F. Kaçar, “Electrical Distribution Network’s Failure Analysis Based on Weather Conditions,” in Proc. ICEEE, pp. 269–272, 2018. | spa |
dcterms.references | L. Zhao, S. Goh, Y. Chan, B. Yeoh, H. Hu, M. Thor, A. Tan and J. Lam, “Prediction of Electrical and Physical Failure Analysis Success Using Artificial Neural Networks,” in Proc. IPFA, pp. 1–5, 2018. | spa |
dcterms.references | I. Kim and R. Harley, “A Study on the Intentional Island Formed by the Residential Photovoltaic System and the Challenges to Island Operation,” in Proc. NAPS, pp. 1–5, 2015. | spa |
dcterms.references | C. Rodriguez, D. Velasco, G. Garcera, E. Figueres and J. Guacaneme, “Reconfigurable Control Scheme for a PV Microinverter Working in Both Grid-Connected and Island Modes,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1582 - 1595, Apr. 2013. | spa |
dcterms.references | J. Peña, G. Melo, C. Canesin and L. Sampaio, “Robust control of a single-phase VSI with LCL filter for grid-tie and islanded operation modes applied to PV distributed generation in microgrids environment,” in Proc. ECCE, pp. 785–792, 2014. | spa |
dcterms.references | B. Babu and S. Gurjar, “A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module,” IEEE Journal of Photovoltaics, vol. 4, no. 4, pp. 1156 - 1161, Apr. 2014. | spa |
dcterms.references | V. Chin, Z. Salam and K. Ishaque, “An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6212 - 6222, Aug. 2017. | spa |
dcterms.references | E. Batzelis, “Simple PV Performance Equations Theoretically Well Founded on the Single-Diode Model,” IEEE Journal of Photovoltaics, vol. 7, no. 5, pp. 1400 – 1409, Sep. 2017. | spa |
dcterms.references | S. Shongwe and M. Hanif, “Comparative Analysis of Different SingleDiode PV Modeling Methods,” IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 938 - 946, May. 2015. | spa |
dcterms.references | Math Works, Inc. MATLAB. Avaliable in: <http://www.mathworks.com/> Access Date: 01/05/2018. 2018 | spa |
dcterms.references | K. Gaouzi, H. El Fadil, A. Rachid, F.Z. Belhaj and F. Giri, “Constrained model predictive control for dc-dc buck power converters,” in Proc. ICEIT, pp. 1–5, 2017. | spa |
dcterms.references | V. Karthikeyan and R. Gupta, “Varying phase angle control in isolated bidirectional DC–DC converter for integrating battery storage and solar PV system in standalone mode,” IET Power Electronics, vol. 10, no. 4, pp. 471 - 479, Apr. 2017. | spa |
dcterms.references | C. Robles, J. Taborda and O. Rodríguez, “Fuzzy Logic Based MPPT Controller for a PV System,” energies, vol. 10, no. 12, Dec. 2017. | spa |
dcterms.references | Z. Cen and P. Stewart, “Condition Parameter Estimation for Photovoltaic Buck Converters Based on Adaptive Model Observers,” IEEE Transactions on Reliability, vol. 66, no. 1, pp. 148 - 160, Mar. 2017. | spa |
dcterms.references | R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili and M. Huemer, “Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation,” IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 287 - 301, Jan. 2014. | spa |
dcterms.references | V. Kamala, K. Premkumara, A. Bisharathu and S. Ramaiyerb, “A modified Perturb & Observe MPPT technique to tackle steady state and rapidly varying atmospheric conditions,” Solar Energy, no. 157, pp. 419 - 426, Sep. 2017. | spa |
dcterms.references | D. Li, C. Man, L. Liu and G. Escobar, “Reactive Power Control for Single-Phase Grid-Tie Inverters Using Quasi-Sinusoidal Waveform,” IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 3 - 11, Jan. 2018. | spa |
dcterms.references | L. Hadjidemetriou, E. Kyriakide, Y. Yang and F. Blaabjerg, “A Synchronization Method for Single-Phase Grid-Tied Inverters,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2139 - 2149, Mar. 2016. | spa |
dcterms.references | S. Jayalath and M. Hanif, “An LCL-Filter Design with Optimum Total Inductance and Capacitance,” IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6687 - 6698, Aug. 2017. | spa |
dcterms.references | H. Hu, Q. Shi, Z. He, J. He and S. Gao, “Potential Harmonic Resonance Impacts of PV Inverter Filters on Distribution Systems,” IEE Transactions on Sustainable Energy, vol. 6, no. 1, pp. 151 – 161, Jan. 2015. | spa |
dcterms.references | M. Morales, J. Rangel, I. Cruz and R. Morales, “Improved gridphotovoltaic system based on variable-step MPPT, predictive control, and active/reactive control,” IEEE Latin America Transactions, vol. 15, no. 11, pp. 2060 – 2074, Nov. 2017. | spa |
dcterms.references | M. Cunha, F. Martins, V. Bravo, M. Zamboti and D. Nogueira, “Harmonic Analysis of a Photovoltaic Systems Connected to Low Voltage Grid,” IEEE Latin America Transactions, vol. 16, no. 1, pp. 112 – 117, Jan. 2018. | spa |
dc.identifier.doi | https://doi.org/10.1109/TLA.2019.8896826 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.17 No.6.(2019) | spa |
dc.relation.citationendpage | 1038 | spa |
dc.relation.citationissue | 6(2019) | spa |
dc.relation.citationstartpage | 1029 | spa |
dc.relation.citationvolume | 17 | spa |
dc.relation.cites | Sarmiento, D. O. C., & Pardo, M. (2019). A Model for an Interconnected Photovoltaic System using an Off-grid Inverter as a Reference Node in Island Mode. IEEE Latin America Transactions, 17(06), 1029-1038. | |
dc.relation.ispartofjournal | IEEE Latin America Transactions | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Converter | eng |
dc.subject.proposal | filter LCL | eng |
dc.subject.proposal | intelligent controller | eng |
dc.subject.proposal | inverter | eng |
dc.subject.proposal | MPPT | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |