Design of a wireless sensor network for optimal deployment of sensor nodes in a cocoa crop
Diseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de cacao
dc.contributor.author | Celis, Jose Miguel | |
dc.contributor.author | Escobar Amado, Christian David | |
dc.contributor.author | Medina Delgado, Byron | |
dc.contributor.author | Castro Casadiego, Sergio | |
dc.contributor.author | Sepúlveda, Sergio | |
dc.contributor.author | Guevara-Ibarra, Dinael | |
dc.date.accessioned | 2021-11-10T14:56:07Z | |
dc.date.available | 2021-11-10T14:56:07Z | |
dc.date.issued | 2020-01-30 | |
dc.identifier.issn | 2256-5337 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/833 | |
dc.description.abstract | In this study, factorial experiments were conducted in two different scenarios to design a Wireless Sensor Network for monitoring a cocoa crop in a rural area in Colombia. Node sensors measured temperature, relative humidity, soil moisture, Ultra-Violet light, and visible light intensity. The factors considered in the experiments were distance between node sensors, height from the ground, and type of antenna; in turn, Received Signal Strength Indicator and data transfer time were the outputs. The wireless sensor network was deployed in the crop, covering approximately 3 % of the area and using 7 different nodes in a cluster tree topology. First, an open field scenario with line of sight was used to determine the appropriate height of the node sensors. Second, a scenario in the actual cocoa crop was utilized to find the appropriate distance between modules and type of antenna. We found, based on our calculations and experimental data, that a height of 1.25 m was required to avoid the Fresnel zone and improve the RSSI of the network. Furthermore, we determined that a distance below 35 m was needed to guarantee signal reception and avoid long data transfer times. The wire antenna exhibited a better performance. Finally, the proposed methodology and monitoring system can be used for agronomic applications in rural areas in Colombia to increase crop yield. | eng |
dc.description.abstract | En este trabajo se realizaron experimentos factoriales en dos escenarios diferentes,para diseñar una red de sensores inalámbricos, que permitamonitorear un cultivo de cacao en una zona rural de Colombia. Los nodos sensores miden la temperatura, la humedad relativa, la humedad del suelo, la luz ultravioleta y la intensidad de la luz visible. Los factores considerados en los experimentos fueron la distancia entre los nodossensores, la altura con respecto al suelo y el tipo de antena;el indicador de intensidad de señal recibida y el tiempo de transferencia de datos fueron las salidas.La red de sensores inalámbricos se implementó en el cultivo, cubriendo aproximadamente el 3% del área, utilizando 7 nodos diferentes en una topología de cluster-tree. En primer lugar, se utilizó un escenario de campo abierto con línea de vista para determinar la altura adecuada de los sensores de nodo. Luego, se utilizó un escenario en el cultivo de cacao real para encontrar la distancia adecuada entre los módulos y el tipo de antena. Se obtuvo,por cálculos y datos experimentales,que se requería una altura de 1.25 m para evitar la zona de Fresnel y mejorar el RSSI de la red. Además, se determinó que se necesitaba una distancia inferior a 35 m para garantizar la recepción de la señal y evitar largos tiempos de transferencia de datos. Adicionalmente, la antena tipo Wire exhibió un mayor rendimientoy la metodología propuesta y el sistema de monitoreo se pueden usar para aplicaciones agronómicas en áreas rurales de Colombia,con el fin deaumentar el rendimiento de los cultivos. | spa |
dc.format.extent | 16 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | TecnoLógicas | spa |
dc.relation.ispartof | TecnoLógicas | |
dc.rights | (c) 2020 TecnoLógicas | eng |
dc.source | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1361 | spa |
dc.title | Design of a wireless sensor network for optimal deployment of sensor nodes in a cocoa crop | eng |
dc.title | Diseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de cacao | spa |
dc.type | Artículo de revista | spa |
dcterms.references | J. Azcón-Bieto y M. Talón, Fundamentos de Fisiología Vegetal, Universidad de Barcelona: McGraw-Hill, 2008. Available: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetalAzcon.pdf | spa |
dcterms.references | C. A. Vera Romero, J. E. Barbosa Jaimes, and D. C. Pabón González, “Acople de sensores en la medición de variables ambientales usando tecnología ZigBee,” Sci. Tech., vol. 19, no. 4, pp. 419–424, Dec. 2014. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/9252/5876 | spa |
dcterms.references | Y. Li, X. Guo, R.-H. Shi, and F.-L. Yang, “Monitor and Control Wireless Sensor Nodes by B/S Architecture,” in 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, 2014. pp. 204–206 https://doi.org/10.1109/WCSN.2014.48 | spa |
dcterms.references | J. F. Monsalve-Posada, A. Arias-Londoño, and J. G. Mejía-Arango, “Desempeño de redes inalámbricas y redes industriales inalámbricas en procesos de control en tiempo real bajo ambientes industriales,” TecnoLógicas, vol. 18, no. 34, p. 87, Jan. 2015. https://doi.org/10.22430/22565337.215 | spa |
dcterms.references | M. Lee, J. Hwang, and H. Yoe, “Agricultural Production System Based on IoT,” in 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, 2013. pp. 833–837. https://doi.org/10.1109/CSE.2013.126 | spa |
dcterms.references | J. Ma, X. Zhou, S. Li, and Z. Li, “Connecting Agriculture to the Internet of Things through Sensor Networks,” in 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, 2011. pp. 184–187. https://doi.org/10.1109/iThings/CPSCom.2011.32 | spa |
dcterms.references | Liang-Ying, G. Yun-feng, and Zhao-Wei, “Greenhouse environment monitoring system design based on WSN and GPRS networks,” in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, 2015. pp. 795–798. https://doi.org/10.1109/CYBER.2015.7288044 | spa |
dcterms.references | A. Cama-Pinto, F. Gil-Montoya, J. Gómez-López, A. García-Cruz, and F. Manzano-Agugliaro, “Wireless surveillance sytem for greenhouse crops,” Dyna, vol. 81, no. 184, pp. 164–170, Apr. 2014. https://doi.org/10.15446/dyna.v81n184.37034 | spa |
dcterms.references | S. Ferdoush and X. Li, “Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications,” Procedia Comput. Sci., vol. 34, pp. 103–110, 2014. https://doi.org/10.1016/j.procs.2014.07.059 | spa |
dcterms.references | M. S. Azimi Mahmud, S. Buyamin, M. M. Mokji, and M. S. Z. Abidin, “Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 3, pp. 847-852, Jun. 2018. Available: https://pdfs.semanticscholar.org/943e/1308bd9d2677cddc91853814fa779b8578e5.pdf | spa |
dcterms.references | M. S. M, S. Das, S. Heble, U. Raj, and R. Karthik, “Internet of Things based Wireless Plant Sensor for Smart Farming,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 456-468, May 2018. Available: https://pdfs.semanticscholar.org/eaa9/c145e6d76bb25a53df97bad85e2e7979e17b.pdf | spa |
dcterms.references | W. T. Sung, J. H. Chen, C. L. Hsiao, and J. S. Lin, “Multi-sensors Data Fusion Based on Arduino Board and XBee Module Technology,” in 2014 International Symposium on Computer, Consumer and Control, Taichung, 2014. pp. 422–425. https://doi.org/10.1109/IS3C.2014.117 | spa |
dcterms.references | M. Pule, A. Yahya, and J. Chuma, “Wireless sensor networks: A survey on monitoring water quality,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 562–570, Dec. 2017. https://doi.org/10.1016/j.jart.2017.07.00 | spa |
dcterms.references | J. C. Correa-Chica, J. F. Botero-Vega, and N. Gaviria-Gómez, “Energy consumption and quality of service in WBAN: A performance evaluation between cross-layer and IEEE802.15.4,” DYNA, vol. 84, no. 202, pp. 120–128, Jul. 2017. https://doi.org/10.15446/dyna.v84n202.61895 | spa |
dcterms.references | C. M. Durán-Acevedo and H. L. García-Sierra, “Desarrollo de un Sistema Inalámbrico para la Supervisión y Control de un Aerogenerador,” TecnoLógicas, pp. 395-409, Oct. 2013. https://doi.org/10.22430/22565337.331 | spa |
dcterms.references | M. R. Fulla, J. L. Palacio-Bedoya, C. A. Flórez-Velásquez, and V. H. Aristizábal-Tique, “Módulo Inalámbrico para el Sensado de Vibraciones Superficiales en Suelos,” TecnoLógicas, vol. Special Ed, pp. 451–464, Oct. 2013. https://doi.org/10.22430/22565337.352 | spa |
dcterms.references | International Telecommunication Union, “Spectrum Monitoring (Handbook).” 2011. Available: https://www.itu.int/pub/R-HDB-23-2011 | spa |
dc.identifier.doi | https://doi.org/10.22430/22565337.1361 | |
dc.publisher.place | Colombia | spa |
dc.relation.citationedition | Vol.23 No.47.(2020) | spa |
dc.relation.citationendpage | 136 | spa |
dc.relation.citationissue | 47(2020) | spa |
dc.relation.citationstartpage | 121 | spa |
dc.relation.citationvolume | 23 | spa |
dc.relation.cites | Celis-Peñaranda, J. M., Escobar-Amado, C. D., Sepúlveda-Mora, S. B., Castro-Casadiego , S. A., Medina-Delgado , B., & Guevara-Ibarra, D. (2020). Design of a Wireless Sensor Network for Optimal Deployment of Sensor Nodes in a Cocoa Crop. TecnoLógicas, 23(47), 121-136. https://doi.org/10.22430/22565337.1361 | |
dc.relation.ispartofjournal | TecnoLógicas | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Wireless sensor networks | eng |
dc.subject.proposal | factorial experiments, | eng |
dc.subject.proposal | agronomic crop | eng |
dc.subject.proposal | XBee module | eng |
dc.subject.proposal | ZigBee wireless | eng |
dc.subject.proposal | Red de sensores inalámbricos | spa |
dc.subject.proposal | experimentos factoriales | spa |
dc.subject.proposal | cultivo agronómico | spa |
dc.subject.proposal | módulo XBee | spa |
dc.subject.proposal | ZigBee inalámbrico | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |