Show simple item record


Diseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de cacao

dc.contributor.authorCelis, Jose Miguel
dc.contributor.authorEscobar Amado, Christian David
dc.contributor.authorMedina Delgado, Byron
dc.contributor.authorCastro Casadiego, Sergio
dc.contributor.authorSepúlveda, Sergio
dc.contributor.authorGuevara-Ibarra, Dinael
dc.date.accessioned2021-11-10T14:56:07Z
dc.date.available2021-11-10T14:56:07Z
dc.date.issued2020-01-30
dc.identifier.issn2256-5337
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/833
dc.description.abstractIn this study, factorial experiments were conducted in two different scenarios to design a Wireless Sensor Network for monitoring a cocoa crop in a rural area in Colombia. Node sensors measured temperature, relative humidity, soil moisture, Ultra-Violet light, and visible light intensity. The factors considered in the experiments were distance between node sensors, height from the ground, and type of antenna; in turn, Received Signal Strength Indicator and data transfer time were the outputs. The wireless sensor network was deployed in the crop, covering approximately 3 % of the area and using 7 different nodes in a cluster tree topology. First, an open field scenario with line of sight was used to determine the appropriate height of the node sensors. Second, a scenario in the actual cocoa crop was utilized to find the appropriate distance between modules and type of antenna. We found, based on our calculations and experimental data, that a height of 1.25 m was required to avoid the Fresnel zone and improve the RSSI of the network. Furthermore, we determined that a distance below 35 m was needed to guarantee signal reception and avoid long data transfer times. The wire antenna exhibited a better performance. Finally, the proposed methodology and monitoring system can be used for agronomic applications in rural areas in Colombia to increase crop yield.eng
dc.description.abstractEn este trabajo se realizaron experimentos factoriales en dos escenarios diferentes,para diseñar una red de sensores inalámbricos, que permitamonitorear un cultivo de cacao en una zona rural de Colombia. Los nodos sensores miden la temperatura, la humedad relativa, la humedad del suelo, la luz ultravioleta y la intensidad de la luz visible. Los factores considerados en los experimentos fueron la distancia entre los nodossensores, la altura con respecto al suelo y el tipo de antena;el indicador de intensidad de señal recibida y el tiempo de transferencia de datos fueron las salidas.La red de sensores inalámbricos se implementó en el cultivo, cubriendo aproximadamente el 3% del área, utilizando 7 nodos diferentes en una topología de cluster-tree. En primer lugar, se utilizó un escenario de campo abierto con línea de vista para determinar la altura adecuada de los sensores de nodo. Luego, se utilizó un escenario en el cultivo de cacao real para encontrar la distancia adecuada entre los módulos y el tipo de antena. Se obtuvo,por cálculos y datos experimentales,que se requería una altura de 1.25 m para evitar la zona de Fresnel y mejorar el RSSI de la red. Además, se determinó que se necesitaba una distancia inferior a 35 m para garantizar la recepción de la señal y evitar largos tiempos de transferencia de datos. Adicionalmente, la antena tipo Wire exhibió un mayor rendimientoy la metodología propuesta y el sistema de monitoreo se pueden usar para aplicaciones agronómicas en áreas rurales de Colombia,con el fin deaumentar el rendimiento de los cultivos.spa
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTecnoLógicasspa
dc.relation.ispartofTecnoLógicas
dc.rights(c) 2020 TecnoLógicaseng
dc.sourcehttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1361spa
dc.titleDesign of a wireless sensor network for optimal deployment of sensor nodes in a cocoa cropeng
dc.titleDiseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de cacaospa
dc.typeArtículo de revistaspa
dcterms.referencesJ. Azcón-Bieto y M. Talón, Fundamentos de Fisiología Vegetal, Universidad de Barcelona: McGraw-Hill, 2008. Available: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetalAzcon.pdfspa
dcterms.referencesC. A. Vera Romero, J. E. Barbosa Jaimes, and D. C. Pabón González, “Acople de sensores en la medición de variables ambientales usando tecnología ZigBee,” Sci. Tech., vol. 19, no. 4, pp. 419–424, Dec. 2014. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/9252/5876spa
dcterms.referencesY. Li, X. Guo, R.-H. Shi, and F.-L. Yang, “Monitor and Control Wireless Sensor Nodes by B/S Architecture,” in 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, 2014. pp. 204–206 https://doi.org/10.1109/WCSN.2014.48spa
dcterms.referencesJ. F. Monsalve-Posada, A. Arias-Londoño, and J. G. Mejía-Arango, “Desempeño de redes inalámbricas y redes industriales inalámbricas en procesos de control en tiempo real bajo ambientes industriales,” TecnoLógicas, vol. 18, no. 34, p. 87, Jan. 2015. https://doi.org/10.22430/22565337.215spa
dcterms.referencesM. Lee, J. Hwang, and H. Yoe, “Agricultural Production System Based on IoT,” in 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, 2013. pp. 833–837. https://doi.org/10.1109/CSE.2013.126spa
dcterms.referencesJ. Ma, X. Zhou, S. Li, and Z. Li, “Connecting Agriculture to the Internet of Things through Sensor Networks,” in 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, 2011. pp. 184–187. https://doi.org/10.1109/iThings/CPSCom.2011.32spa
dcterms.referencesLiang-Ying, G. Yun-feng, and Zhao-Wei, “Greenhouse environment monitoring system design based on WSN and GPRS networks,” in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, 2015. pp. 795–798. https://doi.org/10.1109/CYBER.2015.7288044spa
dcterms.referencesA. Cama-Pinto, F. Gil-Montoya, J. Gómez-López, A. García-Cruz, and F. Manzano-Agugliaro, “Wireless surveillance sytem for greenhouse crops,” Dyna, vol. 81, no. 184, pp. 164–170, Apr. 2014. https://doi.org/10.15446/dyna.v81n184.37034spa
dcterms.referencesS. Ferdoush and X. Li, “Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications,” Procedia Comput. Sci., vol. 34, pp. 103–110, 2014. https://doi.org/10.1016/j.procs.2014.07.059spa
dcterms.referencesM. S. Azimi Mahmud, S. Buyamin, M. M. Mokji, and M. S. Z. Abidin, “Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 3, pp. 847-852, Jun. 2018. Available: https://pdfs.semanticscholar.org/943e/1308bd9d2677cddc91853814fa779b8578e5.pdfspa
dcterms.referencesM. S. M, S. Das, S. Heble, U. Raj, and R. Karthik, “Internet of Things based Wireless Plant Sensor for Smart Farming,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 456-468, May 2018. Available: https://pdfs.semanticscholar.org/eaa9/c145e6d76bb25a53df97bad85e2e7979e17b.pdfspa
dcterms.referencesW. T. Sung, J. H. Chen, C. L. Hsiao, and J. S. Lin, “Multi-sensors Data Fusion Based on Arduino Board and XBee Module Technology,” in 2014 International Symposium on Computer, Consumer and Control, Taichung, 2014. pp. 422–425. https://doi.org/10.1109/IS3C.2014.117spa
dcterms.referencesM. Pule, A. Yahya, and J. Chuma, “Wireless sensor networks: A survey on monitoring water quality,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 562–570, Dec. 2017. https://doi.org/10.1016/j.jart.2017.07.00spa
dcterms.referencesJ. C. Correa-Chica, J. F. Botero-Vega, and N. Gaviria-Gómez, “Energy consumption and quality of service in WBAN: A performance evaluation between cross-layer and IEEE802.15.4,” DYNA, vol. 84, no. 202, pp. 120–128, Jul. 2017. https://doi.org/10.15446/dyna.v84n202.61895spa
dcterms.referencesC. M. Durán-Acevedo and H. L. García-Sierra, “Desarrollo de un Sistema Inalámbrico para la Supervisión y Control de un Aerogenerador,” TecnoLógicas, pp. 395-409, Oct. 2013. https://doi.org/10.22430/22565337.331spa
dcterms.referencesM. R. Fulla, J. L. Palacio-Bedoya, C. A. Flórez-Velásquez, and V. H. Aristizábal-Tique, “Módulo Inalámbrico para el Sensado de Vibraciones Superficiales en Suelos,” TecnoLógicas, vol. Special Ed, pp. 451–464, Oct. 2013. https://doi.org/10.22430/22565337.352spa
dcterms.referencesInternational Telecommunication Union, “Spectrum Monitoring (Handbook).” 2011. Available: https://www.itu.int/pub/R-HDB-23-2011spa
dc.identifier.doihttps://doi.org/10.22430/22565337.1361
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.23 No.47.(2020)spa
dc.relation.citationendpage136spa
dc.relation.citationissue47(2020)spa
dc.relation.citationstartpage121spa
dc.relation.citationvolume23spa
dc.relation.citesCelis-Peñaranda, J. M., Escobar-Amado, C. D., Sepúlveda-Mora, S. B., Castro-Casadiego , S. A., Medina-Delgado , B., & Guevara-Ibarra, D. (2020). Design of a Wireless Sensor Network for Optimal Deployment of Sensor Nodes in a Cocoa Crop. TecnoLógicas, 23(47), 121-136. https://doi.org/10.22430/22565337.1361
dc.relation.ispartofjournalTecnoLógicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalWireless sensor networkseng
dc.subject.proposalfactorial experiments,eng
dc.subject.proposalagronomic cropeng
dc.subject.proposalXBee moduleeng
dc.subject.proposalZigBee wirelesseng
dc.subject.proposalRed de sensores inalámbricosspa
dc.subject.proposalexperimentos factorialesspa
dc.subject.proposalcultivo agronómicospa
dc.subject.proposalmódulo XBeespa
dc.subject.proposalZigBee inalámbricospa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record