Mostrar el registro sencillo del ítem
Establecimiento, estandarización y validación de una metodología para evaluar la inhibición de la proliferación inducida por cetuximab
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.contributor.advisor | Gonzalez Gonzalez, Edith | |
dc.contributor.author | Consuegra Sierra, Johan Sebastian | |
dc.date.accessioned | 2024-06-13T20:44:02Z | |
dc.date.available | 2024-06-13T20:44:02Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/7628 | |
dc.description.abstract | Cetuximab es un tipo de anticuerpo monoclonal aprobado por la Food and Drugs Administration (FDA) en el año 2004 para el tratamiento de diferentes tipos de cáncer. Su aplicación en estos estudios tiene como finalidad comprender mejor la efectividad de Cetuximab como tratamiento terapéutico. Al interactuar con los receptores de factor de crecimiento epidérmico (EGFR) en la superficie de las células cancerosas, Cetuximab bloquea su activación y, por lo tanto, reduce su capacidad de proliferación. En este proyecto se estableció como objetivo establecer y validar una metodología para evaluar la inhibición de la proliferación celular mediada por Cetuximab in vitro utilizando diferentes líneas celulares provenientes de cáncer de mama, cáncer de colon y carcinoma hepatocelular. | |
dc.format | application/pdf | |
dc.publisher | Universidad francisco de paula Santander | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | https://catalogobiblioteca.ufps.edu.co/descargas/tesis/TG_1611431.pdf | |
dc.title | Establecimiento, estandarización y validación de una metodología para evaluar la inhibición de la proliferación inducida por cetuximab | spa |
dc.type | Trabajo de grado - Pregrado | |
dcterms.references | Aguillón G, J. C., Contreras L, J., Dotte G, A., Cruzat C, A., Catalán M, D., Salazar A, L., Molina S, M. C., Guerrero P, J., López N, M., Soto S, L., Salazar-Onfray, F., & Cuchacovich T, M. (2003). Nuevas armas inmunológicas para la medicina del siglo XXI: Terapia biológica basada en el uso de anticuerpos monoclonales de última generación. Revista médica de Chile, 131(12), 1445-1453. https://doi.org/10.4067/S0034-98872003001200013 | |
dcterms.references | Anticuerpos terapéuticos. (2016, marzo 10). IBIAN Technologies. https://www.ibiantech.com/anticuerpos-terapeuticos/ | |
dcterms.references | Antibody therapeutics approved or in regulatory review in the EU or US. (s. f.). The Antibody Society. Recuperado 21 de abril de 2023, de https://www.antibodysociety.org/resources/approved-antibodies/ | |
dcterms.references | Anticuerpos monoclonales: El revolucionario descubrimiento de César Milstein » CAEME. (2019, septiembre 9). https://www.caeme.org.ar/anticuerpos-monoclonales-el-revolucionariodescubrimiento-de-cesar-milstein/ | |
dcterms.references | Brand, T. M., Iida, M., & Wheeler, D. L. (2011). Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biology & Therapy, 11(9), 777-792. https://doi.org/10.4161/cbt.11.9.15050 | |
dcterms.references | BT-474 | ATCC. (s. f.). Recuperado 18 de octubrede 2023, de https://www.atcc.org/products/htb-20 | |
dcterms.references | Cáncer. (s. f.). Recuperado 10 de octubre de 2023, de https://www.who.int/es/newsroom/fact-sheets/detail/cancer | |
dcterms.references | CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay Protocol. (s. f.). Recuperado 6 de diciembre de 2022, de https://worldwide.promega.com/resources/protocols/technical-bulletins/0/celltiter-96- aqueous-nonradioactive-cell-proliferation-assay-protocol/ | |
dcterms.references | Creus, N., Massó, J., Codina, C., & Ribas, J. (2002). Anticuerpos monoclonales en Oncología. 26, 16. | |
dcterms.references | Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., Esener, S., Fitzgerald, R. C., Gambhir, S. S., Kuhn, P., Rebbeck, T. R., & Balasubramanian, S. (2022). Early detection of cancer. Science, 375(6586), eaay9040. https://doi.org/10.1126/science.aay9040 | |
dcterms.references | Dutta, P. R., & Maity, A. (2007). Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer letters, 254(2), 165-177. https://doi.org/10.1016/j.canlet.2007.02.006 | |
dcterms.references | Fu, W., Sun, H., Zhao, Y., Chen, M., Yang, L., Yang, X., & Jin, W. (2018). Targeted delivery of CD44s-siRNA by ScFv overcomes de novo resistance to cetuximab in triple negative breast cancer. Molecular Immunology, 99, 124-133. https://doi.org/10.1016/j.molimm.2018.05.010 | |
dcterms.references | Galizia, G., Lieto, E., De Vita, F., Orditura, M., Castellano, P., Troiani, T., Imperatore, V., & Ciardiello, F. (2007). Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene, 26(25), 3654-3660. https://doi.org/10.1038/sj.onc.1210381 | |
dcterms.references | Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. The FEBS Journal, 280(21), 5350- 5370. https://doi.org/10.1111/febs.12393 | |
dcterms.references | García Merino, A. (2011). Anticuerpos monoclonales. Aspectos básicos. Neurología, 26(5), 301-306. https://doi.org/10.1016/j.nrl.2010.10.005 | |
dcterms.references | Hanck-Silva, G., Fatori Trevizan, L. N., Petrilli, R., de Lima, F. T., Eloy, J. O., & Chorilli, M. (2020). A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Critical Reviews in Analytical Chemistry, 50(2), 125-135. https://doi.org/10.1080/10408347.2019.1581984 | |
dcterms.references | HCT 116 | ATCC. (s. f.). Recuperado 18 de octubre de 2022, de https://www.atcc.org/products/ccl-247 | |
dcterms.references | Hepatitis G2 [HEPG2] | ATCC. (s. f.). Recuperado 18 de octubrede 2022, de https://www.atcc.org/products/hb-8065 | |
dcterms.references | Huang, S. M., Bock, J. M., & Harari, P. M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Research, 59(8), 1935-1940. | |
dcterms.references | Huang, Y., Ognjenovic, J., Karandur, D., Miller, K., Merk, A., Subramaniam, S., & Kuriyan, J. (2021). A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor. eLife, 10, e73218. https://doi.org/10.7554/eLife.73218 | |
dcterms.references | Immune system | Description, Function, & Facts | Britannica. (2023, febrero 23). https://www.britannica.com/science/immune-system | |
dcterms.references | Ich-guideline-q2r2-validation-analytical-procedures-step-2b_en.pdf. (s. f.). Recuperado 17 de enero de 2023, de https://www.ema.europa.eu/en/documents/scientific-guideline/ichguideline-q2r2-validation-analytical-procedures-step-2b_en.pdf | |
dcterms.references | . Jeoung, M. H., Kim, T.-K., Kim, J. W., Cho, Y. B., Na, H. J., Yoo, B. C., Shim, H., Song, D.-K., Heo, K., & Lee, S. (2019). Antibody-Based Targeting of Cell Surface GRP94 Specifically Inhibits Cetuximab-Resistant Colorectal Cancer Growth. Biomolecules, 9(11), 681. https://doi.org/10.3390/biom9110681 | |
dcterms.references | Kattia, B. C., Hidalgo Carrillo, Gabriela, Mora Mata, Raquel, Rodríguez Mora, Ysmael-Acle Sánchez, & Mora Román, Juan José. (2019). ANTICUERPOS MONOCLONALES BIESPECÍFICOS: DESARROLLO, PRODUCCIÓN Y ANTICANCERÍGENA. | |
dcterms.references | Kawaguchi, Y., Kono, K., Mimura, K., Mitsui, F., Sugai, H., Akaike, H., & Fujii, H. (2007). Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. British Journal of Cancer, 97(4), 494-501. https://doi.org/10.1038/sj.bjc.6603885 | |
dcterms.references | . Kong, L., Zhang, Q., Mao, J., Cheng, L., Shi, X., Yu, L., Hu, J., Yang, M., Li, L., Liu, B.-R., & Qian, X. (2021). A dual-targeted molecular therapy of PP242 and cetuximab plays an antitumor effect through EGFR downstream signaling pathways in colorectal cancer. Journal of Gastrointestinal Oncology, 12. https://doi.org/10.21037/jgo-21-467 | |
dcterms.references | Krieghoff-Henning, E., Folkerts, J., Penzkofer, A., & Weg-Remers, S. (2017). Cancer – an overview. Medizinische Monatsschrift Fur Pharmazeuten, 40(2), 48-54. | |
dcterms.references | Kuete, V., Karaosmanoğlu, O., & Sivas, H. (2017). Chapter 10—Anticancer Activities of African Medicinal Spices and Vegetables. En V. Kuete (Ed.), Medicinal Spices and 74 Vegetables from Africa (pp. 271-297). Academic Press. https://doi.org/10.1016/B978-0-12- 809286-6.00010-8 | |
dcterms.references | Kumar, S. S., Price, T. J., Mohyieldin, O., Borg, M., Townsend, A., & Hardingham, J. E. (2014). KRAS G13D Mutation and Sensitivity to Cetuximab or Panitumumab in a Colorectal Cancer Cell Line Model. Gastrointestinal Cancer Research : GCR, 7(1), 23-26. | |
dcterms.references | . Laustsen, A. H., Greiff, V., Karatt-Vellatt, A., Muyldermans, S., & Jenkins, T. P. (2021). Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends in Biotechnology, 39(12), 1263-1273. https://doi.org/10.1016/j.tibtech.2021.03.003 | |
dcterms.references | Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., Hayes, R. J., & Dahiyat, B. I. (2006). Engineered antibody Fc variants with enhanced effector function. Proceedings of the National Academy of Sciences, 103(11), 4005-4010. https://doi.org/10.1073/pnas.0508123103 | |
dcterms.references | Lee, Y.-S., Chin, Y.-T., Yang, Y.-C. S. H., Wei, P.-L., Wu, H.-C., Shih, A., Lu, Y.-T., Pedersen, J. Z., Incerpi, S., Liu, L. F., Lin, H.-Y., & Davis, P. J. (2016). The combination of tetraiodothyroacetic acid and cetuximab inhibits cell proliferation in colorectal cancers with different K-ras status. Steroids, 111, 63-70. https://doi.org/10.1016/j.steroids.2016.03.006 | |
dcterms.references | Leve, F., Bonfim, D. P., Fontes, G., & Morgado-Díaz, J. A. (2019). Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (London, England), 14(12), 1565-1578. https://doi.org/10.2217/nnm-2019-0023 | |
dcterms.references | Levy, E. M., Sycz, G., Arriaga, J. M., Barrio, M. M., von Euw, E. M., Morales, S. B., González, M., Mordoh, J., & Bianchini, M. (2009). Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immunity, 15(2), 91-100. https://doi.org/10.1177/1753425908101404 | |
dcterms.references | Li, C., Iida, M., Dunn, E. F., Ghia, A. J., & Wheeler, D. L. (2009). Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 28(43), 3801-3813. https://doi.org/10.1038/onc.2009.234 | |
dcterms.references | Li, Q.-H., Wang, Y.-Z., Tu, J., Liu, C.-W., Yuan, Y.-J., Lin, R., He, W.-L., Cai, S.-R., He, Y.-L., & Ye, J.-N. (2020). Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance. Gastroenterology Report, 8(3), 179-191. https://doi.org/10.1093/gastro/goaa026 | |
dcterms.references | . Liu, J. K. H. (2014). The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3(4), 113-116. https://doi.org/10.1016/j.amsu.2014.09.001 | |
dcterms.references | Luca, T., Barresi, V., Privitera, G., Musso, N., Caruso, M., Condorelli, D. F., & Castorina, S. (2014). In vitro combined treatment with cetuximab and trastuzumab inhibits growth of colon cancer cells. Cell Proliferation, 47(5), 435-447. https://doi.org/10.1111/cpr.12125 | |
dcterms.references | Machado, N. P., Téllez, G. A., & Castaño, J. C. (2006). Anticuerpos monoclonales: Desarrollo físico y perspectivas terapéuticas. Infectio, 10(3), 186-197. | |
dcterms.references | Microbiologics │ Reference Strains for Microbiological QC Testing. (s. f.). Recuperado 15de septiembre de 2022, de https://www.microbiologics.com/?gclid=Cj0KCQjwmPSSBhCNARIsAH3cYgaFf_fnsnNX9pPZWSwuIKD3mbKFYD6wQlMYDuqXzFg1H2mk8c0tZkaAp7hEALw_wcB | |
dcterms.references | Monoclonal Antibodies (mAb): Harvesting, Types, Applications • Microbe Online. (2019, septiembre 26). Microbe Online. https://microbeonline.com/monoclonal-antibodies-typesand-applications/ | |
dcterms.references | Okada, Y., Miyamoto, H., Goji, T., & Takayama, T. (2014). Biomarkers for Predicting the Efficacy of Anti-Epidermal Growth Factor Receptor Antibody in the Treatment of Colorectal Cancer. Digestion, 89(1), 18-23. https://doi.org/10.1159/000356202 | |
dcterms.references | Pablo Maiso, L. de. (2012). Evaluación de la respuesta antiproliferativa en cáncer colorrectal del oxaliplatino en monoterapia y en combinación. https://academicae.unavarra.es/xmlui/handle/2454/5583 | |
dcterms.references | Papini, F., Sundaresan, J., Leonetti, A., Tiseo, M., Rolfo, C., Peters, G. J., & Giovannetti, E. (2021). Hype or hope – Can combination therapies with third-generation EGFR-TKIs help overcome acquired resistance and improve outcomes in EGFR-mutant advanced/metastatic NSCLC? Critical Reviews in Oncology/Hematology, 166, 103454. https://doi.org/10.1016/j.critrevonc.2021.103454 | |
dcterms.references | Parra-Soto, S., Petermann-Rocha, F., Martínez-Sanguinetti, M. A., Leiva-Ordeñez, A. M., Troncoso-Pantoja, C., Ulloa, N., Diaz-Martínez, X., Celis-Morales, C., Parra-Soto, S., Petermann-Rocha, F., Martínez-Sanguinetti, M. A., Leiva-Ordeñez, A. M., TroncosoPantoja, C., Ulloa, N., Diaz-Martínez, X., & Celis-Morales, C. (2020). Cáncer en Chile y en el mundo: Una mirada actual y su futuro escenario epidemiológico. Revista médica de Chile, 148(10), 1489-1495. https://doi.org/10.4067/S0034-98872020001001489 | |
dcterms.references | Pérez-Loyola, M., Valdés-González, M., & Garrido, G. (s. f.). Modified pectins with activity against colon cancer: A systematic review from 2010-2021. 36. | |
dcterms.references | Ramos-Bello, D., & Llorente, L. (2009). Cincuentenario del descubrimiento de la estructura química de los anticuerpos. Reumatología Clínica, 5(6), 280-284. https://doi.org/10.1016/j.reuma.2009.05.004 | |
dcterms.references | Quienes Somos. (s. f.). UDIBI. Recuperado 21 de septiembre de 2022, de https://udibi.com.mx/quienes-somos/ | |
dcterms.references | Saltz, L. B., Meropol, N. J., Loehrer, P. J., Needle, M. N., Kopit, J., & Mayer, R. J. (2004). Phase II Trial of Cetuximab in Patients With Refractory Colorectal Cancer That Expresses the Epidermal Growth Factor Receptor. Journal of Clinical Oncology, 22(7), 1201-1208. https://doi.org/10.1200/JCO.2004.10.182 | |
dcterms.references | . Scott, A. M., Allison, J. P., & Wolchok, J. D. (2012). Monoclonal antibodies in cancer therapy. Cancer Immunity, 12, 14. | |
dcterms.references | . Talukdar, S., Emdad, L., Das, S. K., & Fisher, P. B. (2020). EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Advances in Cancer Research, 147, 161-188. https://doi.org/10.1016/bs.acr.2020.04.003 | |
dcterms.references | Valverde, A., Peñarando, J., Cañas, A., López-Sánchez, L. M., Conde, F., Guil-Luna, S., Hernández, V., Villar, C., Morales-Estévez, C., de la Haba-Rodríguez, J., Arand o, E., & Rodríguez-Ariza, A. (2017). The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: Role of EGFR-RAS-FOXM1-β-catenin signaling axis. Oncotarget, 8(13), 21754-21769. https://doi.org/10.18632/oncotarget.15567 | |
dcterms.references | Vincenzi, B., Schiavon, G., Silletta, M., Santini, D., & Tonini, G. (2008). The biological properties of cetuximab. Critical Reviews in Oncology/Hematology, 68(2), 93-106. https://doi.org/10.1016/j.critrevonc.2008.07.006 | |
dcterms.references | Wang, Y., Nguyen, D. T., Yang, G., Anesi, J., Kelly, J., Chai, Z., Ahmady, F., Charchar, F., & Golledge, J. (2021). A Modified MTS Proliferation Assay for Suspended Cells to Avoid the Interference by Hydralazine and β-Mercaptoethanol. ASSAY and Drug Development Technologies, 19(3), 184-190. https://doi.org/10.1089/adt.2020.1027 | |
dcterms.references | Wang, Z. (2017). ErbB Receptors and Cancer. Methods in Molecular Biology (Clifton, N.J.), 1652, 3-35. https://doi.org/10.1007/978-1-4939-7219-7_1 | |
dcterms.references | Wee, P., & Wang, Z. (2017). Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers, 9(5), 52. https://doi.org/10.3390/cancers9050052 | |
dcterms.references | Xu, H., Yu, Y., Marciniak, D., Rishi, A. K., Sarkar, F. H., Kucuk, O., & Majumdar, A. P. N. (2005). Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Molecular Cancer Therapeutics, 4(3), 435-442. https://doi.org/10.1158/1535-7163.MCT-04-0280 | |
dcterms.references | Xue, F., Liu, Y., Chu, H., Wen, Y., Yan, L., Tang, Q., Xiao, E., Zhang, D., & Zhang, H. (2016). EIF5A2 is an alternative pathway for cell proliferation in cetuximab-treated epithelial hepatocellular carcinoma. American Journal of Translational Research, 8(11), 4670-4681. | |
dcterms.references | Yamazaki, M., Yamashita, Y., Kubo, N., Yashiro, M., Ohira, M., Ako, E., Tanaka, H., Muguruma, K., Sawada, T., & Hirakawa, K. (2012). Concurrent biological targeting therapy 79 of squamous cell carcinoma of the esophagus with cetuximab and trastuzumab. Oncology Reports, 28(1), 49-54. https://doi.org/10.3892/or.2012.1803 | |
dcterms.references | Yi, C., Ruan, C., Wang, H., Xu, X., Zhao, Y., Fang, M., Ji, J., Gu, X., & Gao, C. (2014). Function characterization of a glyco-engineered anti-EGFR monoclonal antibody cetuximab in vitro. Acta Pharmacologica Sinica, 35(11), 1439-1446. https://doi.org/10.1038/aps.2014.77 | |
dcterms.references | Yin, L., Qi, X.-W., Liu, X.-Z., Yang, Z.-Y., Cai, R.-L., Cui, H.-J., Chen, L., & Yu, S.-C. (2020). Icaritin enhances the efficacy of cetuximab against triple-negative breast cancer cells. Oncology Letters, 19(6), 3950-3958. https://doi.org/10.3892/ol.2020.11496 | |
dcterms.references | . Zheng, L., Tan, W., Zhang, J., Yuan, D., Yang, J., & Liu, H. (2014). Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling. Cancer Immunology, Immunotherapy: CII, 63(6), 581-586. https://doi.org/10.1007/s00262-014-1541-z | |
dc.description.notes | Archivo Medios Electrónicos | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero(a) Biotecnológico(a) | spa |
dc.identifier.instname | instname:Universidad Francisco de Paula Santander | |
dc.identifier.reponame | reponame:Repositorio Digital UFPS | |
dc.identifier.repourl | repourl:https://repositorio.ufps.edu.co/ | |
dc.publisher.faculty | Facultad de Ciencias Agrarias y del Ambiente | spa |
dc.publisher.program | Ingeniería Biotecnológica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject.proposal | Crecimiento | spa |
dc.subject.proposal | Inmunoterapia | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.identifier.signature | TIB V00085/2023 | spa |
dc.contributor.jury | Suárez Contreras, Liliana Yaneth | |
dc.contributor.jury | Muñoz Peñaloza, Yaneth Amparo | |
dc.contributor.jury | López Barrera, German Luciano | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 |