Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.contributor.advisorGonzalez Gonzalez, Edith
dc.contributor.authorConsuegra Sierra, Johan Sebastian
dc.date.accessioned2024-06-13T20:44:02Z
dc.date.available2024-06-13T20:44:02Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7628
dc.description.abstractCetuximab es un tipo de anticuerpo monoclonal aprobado por la Food and Drugs Administration (FDA) en el año 2004 para el tratamiento de diferentes tipos de cáncer. Su aplicación en estos estudios tiene como finalidad comprender mejor la efectividad de Cetuximab como tratamiento terapéutico. Al interactuar con los receptores de factor de crecimiento epidérmico (EGFR) en la superficie de las células cancerosas, Cetuximab bloquea su activación y, por lo tanto, reduce su capacidad de proliferación. En este proyecto se estableció como objetivo establecer y validar una metodología para evaluar la inhibición de la proliferación celular mediada por Cetuximab in vitro utilizando diferentes líneas celulares provenientes de cáncer de mama, cáncer de colon y carcinoma hepatocelular.
dc.formatapplication/pdf
dc.publisherUniversidad francisco de paula Santander
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcehttps://catalogobiblioteca.ufps.edu.co/descargas/tesis/TG_1611431.pdf
dc.titleEstablecimiento, estandarización y validación de una metodología para evaluar la inhibición de la proliferación inducida por cetuximabspa
dc.typeTrabajo de grado - Pregrado
dcterms.referencesAguillón G, J. C., Contreras L, J., Dotte G, A., Cruzat C, A., Catalán M, D., Salazar A, L., Molina S, M. C., Guerrero P, J., López N, M., Soto S, L., Salazar-Onfray, F., & Cuchacovich T, M. (2003). Nuevas armas inmunológicas para la medicina del siglo XXI: Terapia biológica basada en el uso de anticuerpos monoclonales de última generación. Revista médica de Chile, 131(12), 1445-1453. https://doi.org/10.4067/S0034-98872003001200013
dcterms.referencesAnticuerpos terapéuticos. (2016, marzo 10). IBIAN Technologies. https://www.ibiantech.com/anticuerpos-terapeuticos/
dcterms.referencesAntibody therapeutics approved or in regulatory review in the EU or US. (s. f.). The Antibody Society. Recuperado 21 de abril de 2023, de https://www.antibodysociety.org/resources/approved-antibodies/
dcterms.referencesAnticuerpos monoclonales: El revolucionario descubrimiento de César Milstein » CAEME. (2019, septiembre 9). https://www.caeme.org.ar/anticuerpos-monoclonales-el-revolucionariodescubrimiento-de-cesar-milstein/
dcterms.referencesBrand, T. M., Iida, M., & Wheeler, D. L. (2011). Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biology & Therapy, 11(9), 777-792. https://doi.org/10.4161/cbt.11.9.15050
dcterms.referencesBT-474 | ATCC. (s. f.). Recuperado 18 de octubrede 2023, de https://www.atcc.org/products/htb-20
dcterms.referencesCáncer. (s. f.). Recuperado 10 de octubre de 2023, de https://www.who.int/es/newsroom/fact-sheets/detail/cancer
dcterms.referencesCellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay Protocol. (s. f.). Recuperado 6 de diciembre de 2022, de https://worldwide.promega.com/resources/protocols/technical-bulletins/0/celltiter-96- aqueous-nonradioactive-cell-proliferation-assay-protocol/
dcterms.referencesCreus, N., Massó, J., Codina, C., & Ribas, J. (2002). Anticuerpos monoclonales en Oncología. 26, 16.
dcterms.referencesCrosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., Esener, S., Fitzgerald, R. C., Gambhir, S. S., Kuhn, P., Rebbeck, T. R., & Balasubramanian, S. (2022). Early detection of cancer. Science, 375(6586), eaay9040. https://doi.org/10.1126/science.aay9040
dcterms.referencesDutta, P. R., & Maity, A. (2007). Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer letters, 254(2), 165-177. https://doi.org/10.1016/j.canlet.2007.02.006
dcterms.referencesFu, W., Sun, H., Zhao, Y., Chen, M., Yang, L., Yang, X., & Jin, W. (2018). Targeted delivery of CD44s-siRNA by ScFv overcomes de novo resistance to cetuximab in triple negative breast cancer. Molecular Immunology, 99, 124-133. https://doi.org/10.1016/j.molimm.2018.05.010
dcterms.referencesGalizia, G., Lieto, E., De Vita, F., Orditura, M., Castellano, P., Troiani, T., Imperatore, V., & Ciardiello, F. (2007). Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene, 26(25), 3654-3660. https://doi.org/10.1038/sj.onc.1210381
dcterms.referencesGan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. The FEBS Journal, 280(21), 5350- 5370. https://doi.org/10.1111/febs.12393
dcterms.referencesGarcía Merino, A. (2011). Anticuerpos monoclonales. Aspectos básicos. Neurología, 26(5), 301-306. https://doi.org/10.1016/j.nrl.2010.10.005
dcterms.referencesHanck-Silva, G., Fatori Trevizan, L. N., Petrilli, R., de Lima, F. T., Eloy, J. O., & Chorilli, M. (2020). A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Critical Reviews in Analytical Chemistry, 50(2), 125-135. https://doi.org/10.1080/10408347.2019.1581984
dcterms.referencesHCT 116 | ATCC. (s. f.). Recuperado 18 de octubre de 2022, de https://www.atcc.org/products/ccl-247
dcterms.referencesHepatitis G2 [HEPG2] | ATCC. (s. f.). Recuperado 18 de octubrede 2022, de https://www.atcc.org/products/hb-8065
dcterms.referencesHuang, S. M., Bock, J. M., & Harari, P. M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Research, 59(8), 1935-1940.
dcterms.referencesHuang, Y., Ognjenovic, J., Karandur, D., Miller, K., Merk, A., Subramaniam, S., & Kuriyan, J. (2021). A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor. eLife, 10, e73218. https://doi.org/10.7554/eLife.73218
dcterms.referencesImmune system | Description, Function, & Facts | Britannica. (2023, febrero 23). https://www.britannica.com/science/immune-system
dcterms.referencesIch-guideline-q2r2-validation-analytical-procedures-step-2b_en.pdf. (s. f.). Recuperado 17 de enero de 2023, de https://www.ema.europa.eu/en/documents/scientific-guideline/ichguideline-q2r2-validation-analytical-procedures-step-2b_en.pdf
dcterms.references. Jeoung, M. H., Kim, T.-K., Kim, J. W., Cho, Y. B., Na, H. J., Yoo, B. C., Shim, H., Song, D.-K., Heo, K., & Lee, S. (2019). Antibody-Based Targeting of Cell Surface GRP94 Specifically Inhibits Cetuximab-Resistant Colorectal Cancer Growth. Biomolecules, 9(11), 681. https://doi.org/10.3390/biom9110681
dcterms.referencesKattia, B. C., Hidalgo Carrillo, Gabriela, Mora Mata, Raquel, Rodríguez Mora, Ysmael-Acle Sánchez, & Mora Román, Juan José. (2019). ANTICUERPOS MONOCLONALES BIESPECÍFICOS: DESARROLLO, PRODUCCIÓN Y ANTICANCERÍGENA.
dcterms.referencesKawaguchi, Y., Kono, K., Mimura, K., Mitsui, F., Sugai, H., Akaike, H., & Fujii, H. (2007). Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. British Journal of Cancer, 97(4), 494-501. https://doi.org/10.1038/sj.bjc.6603885
dcterms.references. Kong, L., Zhang, Q., Mao, J., Cheng, L., Shi, X., Yu, L., Hu, J., Yang, M., Li, L., Liu, B.-R., & Qian, X. (2021). A dual-targeted molecular therapy of PP242 and cetuximab plays an antitumor effect through EGFR downstream signaling pathways in colorectal cancer. Journal of Gastrointestinal Oncology, 12. https://doi.org/10.21037/jgo-21-467
dcterms.referencesKrieghoff-Henning, E., Folkerts, J., Penzkofer, A., & Weg-Remers, S. (2017). Cancer – an overview. Medizinische Monatsschrift Fur Pharmazeuten, 40(2), 48-54.
dcterms.referencesKuete, V., Karaosmanoğlu, O., & Sivas, H. (2017). Chapter 10—Anticancer Activities of African Medicinal Spices and Vegetables. En V. Kuete (Ed.), Medicinal Spices and 74 Vegetables from Africa (pp. 271-297). Academic Press. https://doi.org/10.1016/B978-0-12- 809286-6.00010-8
dcterms.referencesKumar, S. S., Price, T. J., Mohyieldin, O., Borg, M., Townsend, A., & Hardingham, J. E. (2014). KRAS G13D Mutation and Sensitivity to Cetuximab or Panitumumab in a Colorectal Cancer Cell Line Model. Gastrointestinal Cancer Research : GCR, 7(1), 23-26.
dcterms.references. Laustsen, A. H., Greiff, V., Karatt-Vellatt, A., Muyldermans, S., & Jenkins, T. P. (2021). Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends in Biotechnology, 39(12), 1263-1273. https://doi.org/10.1016/j.tibtech.2021.03.003
dcterms.referencesLazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., Hayes, R. J., & Dahiyat, B. I. (2006). Engineered antibody Fc variants with enhanced effector function. Proceedings of the National Academy of Sciences, 103(11), 4005-4010. https://doi.org/10.1073/pnas.0508123103
dcterms.referencesLee, Y.-S., Chin, Y.-T., Yang, Y.-C. S. H., Wei, P.-L., Wu, H.-C., Shih, A., Lu, Y.-T., Pedersen, J. Z., Incerpi, S., Liu, L. F., Lin, H.-Y., & Davis, P. J. (2016). The combination of tetraiodothyroacetic acid and cetuximab inhibits cell proliferation in colorectal cancers with different K-ras status. Steroids, 111, 63-70. https://doi.org/10.1016/j.steroids.2016.03.006
dcterms.referencesLeve, F., Bonfim, D. P., Fontes, G., & Morgado-Díaz, J. A. (2019). Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (London, England), 14(12), 1565-1578. https://doi.org/10.2217/nnm-2019-0023
dcterms.referencesLevy, E. M., Sycz, G., Arriaga, J. M., Barrio, M. M., von Euw, E. M., Morales, S. B., González, M., Mordoh, J., & Bianchini, M. (2009). Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immunity, 15(2), 91-100. https://doi.org/10.1177/1753425908101404
dcterms.referencesLi, C., Iida, M., Dunn, E. F., Ghia, A. J., & Wheeler, D. L. (2009). Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 28(43), 3801-3813. https://doi.org/10.1038/onc.2009.234
dcterms.referencesLi, Q.-H., Wang, Y.-Z., Tu, J., Liu, C.-W., Yuan, Y.-J., Lin, R., He, W.-L., Cai, S.-R., He, Y.-L., & Ye, J.-N. (2020). Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance. Gastroenterology Report, 8(3), 179-191. https://doi.org/10.1093/gastro/goaa026
dcterms.references. Liu, J. K. H. (2014). The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3(4), 113-116. https://doi.org/10.1016/j.amsu.2014.09.001
dcterms.referencesLuca, T., Barresi, V., Privitera, G., Musso, N., Caruso, M., Condorelli, D. F., & Castorina, S. (2014). In vitro combined treatment with cetuximab and trastuzumab inhibits growth of colon cancer cells. Cell Proliferation, 47(5), 435-447. https://doi.org/10.1111/cpr.12125
dcterms.referencesMachado, N. P., Téllez, G. A., & Castaño, J. C. (2006). Anticuerpos monoclonales: Desarrollo físico y perspectivas terapéuticas. Infectio, 10(3), 186-197.
dcterms.referencesMicrobiologics │ Reference Strains for Microbiological QC Testing. (s. f.). Recuperado 15de septiembre de 2022, de https://www.microbiologics.com/?gclid=Cj0KCQjwmPSSBhCNARIsAH3cYgaFf_fnsnNX9pPZWSwuIKD3mbKFYD6wQlMYDuqXzFg1H2mk8c0tZkaAp7hEALw_wcB
dcterms.referencesMonoclonal Antibodies (mAb): Harvesting, Types, Applications • Microbe Online. (2019, septiembre 26). Microbe Online. https://microbeonline.com/monoclonal-antibodies-typesand-applications/
dcterms.referencesOkada, Y., Miyamoto, H., Goji, T., & Takayama, T. (2014). Biomarkers for Predicting the Efficacy of Anti-Epidermal Growth Factor Receptor Antibody in the Treatment of Colorectal Cancer. Digestion, 89(1), 18-23. https://doi.org/10.1159/000356202
dcterms.referencesPablo Maiso, L. de. (2012). Evaluación de la respuesta antiproliferativa en cáncer colorrectal del oxaliplatino en monoterapia y en combinación. https://academicae.unavarra.es/xmlui/handle/2454/5583
dcterms.referencesPapini, F., Sundaresan, J., Leonetti, A., Tiseo, M., Rolfo, C., Peters, G. J., & Giovannetti, E. (2021). Hype or hope – Can combination therapies with third-generation EGFR-TKIs help overcome acquired resistance and improve outcomes in EGFR-mutant advanced/metastatic NSCLC? Critical Reviews in Oncology/Hematology, 166, 103454. https://doi.org/10.1016/j.critrevonc.2021.103454
dcterms.referencesParra-Soto, S., Petermann-Rocha, F., Martínez-Sanguinetti, M. A., Leiva-Ordeñez, A. M., Troncoso-Pantoja, C., Ulloa, N., Diaz-Martínez, X., Celis-Morales, C., Parra-Soto, S., Petermann-Rocha, F., Martínez-Sanguinetti, M. A., Leiva-Ordeñez, A. M., TroncosoPantoja, C., Ulloa, N., Diaz-Martínez, X., & Celis-Morales, C. (2020). Cáncer en Chile y en el mundo: Una mirada actual y su futuro escenario epidemiológico. Revista médica de Chile, 148(10), 1489-1495. https://doi.org/10.4067/S0034-98872020001001489
dcterms.referencesPérez-Loyola, M., Valdés-González, M., & Garrido, G. (s. f.). Modified pectins with activity against colon cancer: A systematic review from 2010-2021. 36.
dcterms.referencesRamos-Bello, D., & Llorente, L. (2009). Cincuentenario del descubrimiento de la estructura química de los anticuerpos. Reumatología Clínica, 5(6), 280-284. https://doi.org/10.1016/j.reuma.2009.05.004
dcterms.referencesQuienes Somos. (s. f.). UDIBI. Recuperado 21 de septiembre de 2022, de https://udibi.com.mx/quienes-somos/
dcterms.referencesSaltz, L. B., Meropol, N. J., Loehrer, P. J., Needle, M. N., Kopit, J., & Mayer, R. J. (2004). Phase II Trial of Cetuximab in Patients With Refractory Colorectal Cancer That Expresses the Epidermal Growth Factor Receptor. Journal of Clinical Oncology, 22(7), 1201-1208. https://doi.org/10.1200/JCO.2004.10.182
dcterms.references. Scott, A. M., Allison, J. P., & Wolchok, J. D. (2012). Monoclonal antibodies in cancer therapy. Cancer Immunity, 12, 14.
dcterms.references. Talukdar, S., Emdad, L., Das, S. K., & Fisher, P. B. (2020). EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Advances in Cancer Research, 147, 161-188. https://doi.org/10.1016/bs.acr.2020.04.003
dcterms.referencesValverde, A., Peñarando, J., Cañas, A., López-Sánchez, L. M., Conde, F., Guil-Luna, S., Hernández, V., Villar, C., Morales-Estévez, C., de la Haba-Rodríguez, J., Arand o, E., & Rodríguez-Ariza, A. (2017). The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: Role of EGFR-RAS-FOXM1-β-catenin signaling axis. Oncotarget, 8(13), 21754-21769. https://doi.org/10.18632/oncotarget.15567
dcterms.referencesVincenzi, B., Schiavon, G., Silletta, M., Santini, D., & Tonini, G. (2008). The biological properties of cetuximab. Critical Reviews in Oncology/Hematology, 68(2), 93-106. https://doi.org/10.1016/j.critrevonc.2008.07.006
dcterms.referencesWang, Y., Nguyen, D. T., Yang, G., Anesi, J., Kelly, J., Chai, Z., Ahmady, F., Charchar, F., & Golledge, J. (2021). A Modified MTS Proliferation Assay for Suspended Cells to Avoid the Interference by Hydralazine and β-Mercaptoethanol. ASSAY and Drug Development Technologies, 19(3), 184-190. https://doi.org/10.1089/adt.2020.1027
dcterms.referencesWang, Z. (2017). ErbB Receptors and Cancer. Methods in Molecular Biology (Clifton, N.J.), 1652, 3-35. https://doi.org/10.1007/978-1-4939-7219-7_1
dcterms.referencesWee, P., & Wang, Z. (2017). Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers, 9(5), 52. https://doi.org/10.3390/cancers9050052
dcterms.referencesXu, H., Yu, Y., Marciniak, D., Rishi, A. K., Sarkar, F. H., Kucuk, O., & Majumdar, A. P. N. (2005). Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Molecular Cancer Therapeutics, 4(3), 435-442. https://doi.org/10.1158/1535-7163.MCT-04-0280
dcterms.referencesXue, F., Liu, Y., Chu, H., Wen, Y., Yan, L., Tang, Q., Xiao, E., Zhang, D., & Zhang, H. (2016). EIF5A2 is an alternative pathway for cell proliferation in cetuximab-treated epithelial hepatocellular carcinoma. American Journal of Translational Research, 8(11), 4670-4681.
dcterms.referencesYamazaki, M., Yamashita, Y., Kubo, N., Yashiro, M., Ohira, M., Ako, E., Tanaka, H., Muguruma, K., Sawada, T., & Hirakawa, K. (2012). Concurrent biological targeting therapy 79 of squamous cell carcinoma of the esophagus with cetuximab and trastuzumab. Oncology Reports, 28(1), 49-54. https://doi.org/10.3892/or.2012.1803
dcterms.referencesYi, C., Ruan, C., Wang, H., Xu, X., Zhao, Y., Fang, M., Ji, J., Gu, X., & Gao, C. (2014). Function characterization of a glyco-engineered anti-EGFR monoclonal antibody cetuximab in vitro. Acta Pharmacologica Sinica, 35(11), 1439-1446. https://doi.org/10.1038/aps.2014.77
dcterms.referencesYin, L., Qi, X.-W., Liu, X.-Z., Yang, Z.-Y., Cai, R.-L., Cui, H.-J., Chen, L., & Yu, S.-C. (2020). Icaritin enhances the efficacy of cetuximab against triple-negative breast cancer cells. Oncology Letters, 19(6), 3950-3958. https://doi.org/10.3892/ol.2020.11496
dcterms.references. Zheng, L., Tan, W., Zhang, J., Yuan, D., Yang, J., & Liu, H. (2014). Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling. Cancer Immunology, Immunotherapy: CII, 63(6), 581-586. https://doi.org/10.1007/s00262-014-1541-z
dc.description.notesArchivo Medios Electrónicosspa
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero(a) Biotecnológico(a)spa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander
dc.identifier.reponamereponame:Repositorio Digital UFPS
dc.identifier.repourlrepourl:https://repositorio.ufps.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias y del Ambientespa
dc.publisher.programIngeniería Biotecnológicaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCrecimientospa
dc.subject.proposalInmunoterapiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.signatureTIB V00085/2023spa
dc.contributor.jurySuárez Contreras, Liliana Yaneth
dc.contributor.juryMuñoz Peñaloza, Yaneth Amparo
dc.contributor.juryLópez Barrera, German Luciano
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)