Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.contributor.advisorDuarte Gómez, Edwin Javier
dc.contributor.authorBarrera Delgado, Diego Andrés
dc.date.accessioned2024-06-13T20:44:01Z
dc.date.available2024-06-13T20:44:01Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7610
dc.description.abstractEl Manejo Integrado de Plagas y Enfermedades (MIPE), es un sistema dinámico orientado al monitoreo constante y programado de los cultivos, este no es un sistema rígido que se pretenda implantar dentro de las producciones, pues es más un modelo flexible en el cual se han de incluir las prácticas agrícolas de cada usuario. Se han establecido propuestas para el tratamiento del tizón foliar en zanahoria (Daucus carota) por Alternaria (ALB); se plantea estimular el sistema inmunitario innato de una planta, para aumentar la resistencia sistémica inducida (ISR) contra los patógenos, se plantea, por otra parte, "matar" de hambre o superar a los patógenos, limitando disponibilidad de nutrientes empleando microorganismos antagonistas, de hecho estas propuestas se pueden ajustar al empleo de microorganismos endófitos, para mitigar los efectos de la infección con el hongo Alternaria dauci.
dc.formatapplication/pdf
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcehttps://catalogobiblioteca.ufps.edu.co/descargas/tesis/1611469.pdf
dc.titleAnálisis de los efectos en el empleo de microorganismos para el tratamiento del tizón de la hoja en cultivos de zanahoria (daucus carota) producido por alternaria dauci.spa
dc.typeTrabajo de grado - Pregrado
dcterms.referencesAbdelrazek, S. (2018). Carrot Endophytes: Diversity, Ecology and Function. Indiana: Purdue University Graduate School.
dcterms.referencesAbdelrazek, S., Choudhari, S., Thimmapuram, J., Simon, P., Colley, M., Mengiste, T., et al. (2020). Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific reports, 10(1), 1-14.
dcterms.referencesAbdelrazek, S., Simon, P., Colley, M., Mengiste, T. & Hoagland, L. (2020). Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS One, 15(6), 1-26. Recuperado de: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.033783&type=printable
dcterms.referencesAhmad, L., Siddiqui, Z. A. & Abd, E. (2019). Effects of interaction of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani on the growth, chlorophyll, carotenoid and proline contents of carrot in three types of soil. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(4), 324-331.
dcterms.referencesAli, S., Charles, T. & Glick, B. (2017). Endophytic phytohormones and their role in plant growth promotion. Springer: Functional Importance of the Plant Microbiome.
dcterms.referencesÁlvarez, D., Blandón, J., Ceballos, V., Mejía, M. & Buriticá, H. (2017). Aislamiento de Microorganismos en diferentes ambientes (Suelo, Agua y Aire). Tesis de grado. Universidad Libre. Bogotá, Colombia.
dcterms.referencesÁlvarez, J., Santoyo, G. & Rocha, M. (2020). Pseudomonas fluorescens: Mecanismos y aplicaciones en la agricultura sustentable. Revista Latinoamericana de Recursos Naturales, 16(1), 01-10.
dcterms.referencesAviléz, A. (2021). Bacteria benéfica Pseudomona fluorescens como agente de control biológico para mejorar la producción del cultivo de maíz. Tesis de grado. Universidad Técnica de Babahoyo. Babahoyo, Ecuador.
dcterms.referencesAyubb, N., Cerra, A., Chamorro, L. & Pérez, A. (2017). Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia. Revista Colombiana de Ciencia Animal, 9(2), 281.
dcterms.referencesBarrera, P., Ghiringhelli, D., Mosher, S., Caro, A., Massart, S. & Belaich, M. (2018). Las ómicas en el control biológico. Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. Bogotá: Corporación Colombiana de Investigación Agropecuaria
dcterms.referencesCámara de Comercio de Bogotá. (2015).Vicepresidencia de Fortalecimiento Empresarial; Programa de Apoyo Agrícola y Agroindustrial. Bogotá: CCB.
dcterms.referencesCasteblanco, J. (2018). Técnicas de remediación de metales pesados con potencial aplicación en el cultivo de cacao. La Granja. Revista de Ciencias de la Vida, 27(1), 21-35.
dcterms.referencesChrapačienė, S., Rasiukevičiūtė, N. & Valiuškaitė, A. (2021). Biocontrol of Carrot DiseaseCausing Pathogens Using Essential Oils. Plants, 10(11), 2231.
dcterms.referencesCommisso, M., Toffali, P., Strazzer, M., Stocchero, S., Ceoldo, B., Baldan, M. et al. (2016). Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures. Frontiers in Plant Science, 7(2), 1401-1439.
dcterms.referencesCourtial, J., Helesbeux, J., Oudart, H., Aligon, S., Bahut, M., Hamon, B. et al. (2022). Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Scientific Reports, 12(1), 1-20.
dcterms.referencesCruz, A. (2018). Identificación morfológica y molecular de cepas del hongo (Alternaria dauci) patógeno de la zanahoria (Daucus carota L.). Aporte Santiaguino, 11(1), 21-30.
dcterms.referencesDasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. & Bisht, S. (2021). Microbial biofertilizers: Recent trends and future outlook. Recent Advancement in Microbial Biotechnology, 4(2), 1-26.
dcterms.referencesDo, J., Min, J., Kim, Y., Park, Y. & Kim, H. (2020). Detection of fungicidal activities against Alternaria dauci causing Alternaria leaf spot in carrot and monitoring for the fungicide resistance. Research in Plant Disease, 26(2), 61-71.
dcterms.referencesDong, W., Wang, B., Hyde, K., McKenzie, E., Raja, H., Tanaka, K., et al. (2020). Freshwater Dothideomycetes. Fungal Diversity, 105(1), 319-575.
dcterms.referencesDorna, H., Rosińska, A. & Szopińska, D. (2021). The Effect of Acetic Acid Treatments on the Quality of Stored Carrot (Daucus carota L.) Seeds. Agronomy, 11(6), 1176.
dcterms.referencesElansary, H., El-Ansary, D. & Al-Mana, F. (2019). 5-Aminolevulinic acid and soil fertility enhance the resistance of rosemary to Alternaria dauci and Rhizoctonia solani and modulate plant biochemistry. Plants, 8(12), 585.
dcterms.referencesFeichtmayer, J., Deng, L. & Griebler, C. (2017). Antagonistic microbial interactions: contributions and potential applications for controlling pathogens in the aquatic systems. Frontiers in Microbiology, 8(2), 1-2192.
dcterms.referencesFreire, M., Mussi, V., Mattoso, T., Henk, D., Mendes, A., Macedo, M., et al. (2017). Survey of endophytic Alternaria species isolated from plants in the Brazilian restinga biome. IOSR Journal of Pharmaceutical and Biological Sciences, 12(2), 84-94.
dcterms.referencesGalindo, J. & Saboyá, J. (2020). Zanahoria (Daucus carota L.): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. Bogotá: Corredor Tecnológico Agroindustrial.
dcterms.referencesGayithri, M., Ahir, R., Yadav, P. & Meena, R. (2021). Effect of physical parameters on the growth of Alternaria alternata causing Alternaria leaf blight of carrot. The Pharma Innovation Journal, 10(11), 1078-1083. Recuperado de: https://www.thepharmajournal.com/archives/2021/vol10issue11/PartP/10-10-509-308.pdf
dcterms.referencesHammamia, I., Hsouna, A., Hamdi, N., Gdoura, R. & Triki, M. (2013). Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. Comptes Rendus Biologies, 336(11), 557–564.
dcterms.referencesHardoim, R., Van, G., Berg, A., Pirttilä, S., Compant, A., Campisano, M., et al. (2015). "The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes." Microbiology and Molecular Biology Reviews 79(3), 293-320.
dcterms.referencesHongsanan, S., Hyde, D., Phookamsak, R., Wanasinghe, N., McKenzie, H., Sarma, V. & Xie, N. (2020). Refined families of dothideomycetes: dothideomycetidae and pleosporomycetidae. Mycosphere 11(1), 1553–2107.
dcterms.referencesKgatle, M., Flett, B., Truter, M. & Aveling, A. (2020). Control of Alternaria leaf blight caused by Alternaria alternata on sunflower using fungicides and Bacillus amyloliquefaciens. Crop Protection, 132(4), 105- 146.
dcterms.referencesKour, D., Rana, K., Yadav, A., Yadav, N., Kumar, M., Kumar, V., et al. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23(2), 101-487.
dcterms.referencesKrishna, V., Suryawanshi, A. P., Prajapati, S. & Surekha, S. (2018). Effect of different culture media on growth and sporulation of Alternaria dauci causing carrot leaf blight. Journal of Pharmacognosy and Phytochemistry, 7(6), 1789-1792.
dcterms.referencesKumar, A., Droby, S., Singh, V., Singh, S. & White, J. (2020). Entry, colonization, and distribution of endophytic microorganisms in plants. In Microbial endophytes. New Jersey: Woodhead Publishing.
dcterms.referencesKumar, A., Dutta, R., Ajay, B. & Radhakrishnan, T. (2022). Alternaria leaf blight (Alternaria spp.)–an emerging foliar fungal disease of winter-summer groundnut (Arachis hypogaea): A review. The Indian Journal of Agricultural Sciences, 92(9), 1-15
dcterms.referencesKumar, M., Saxena, R. & Tomar, R. (2017). Endophytic microorganisms: promising candidate as biofertilizer. In Microorganisms for green revolution. Singapore: Springer.
dcterms.referencesLareen, A., Burton, F. & Schäfer, P. (2016). "Plant root-microbe communication in shaping root microbiomes." Plant Molecular Biology 90(6), 575-587.
dcterms.referencesLeyte, M., Richomme, P. & Peña, L. (2021). Diketopiperazines from Alternaria dauci. Journal of the Mexican Chemical Society, 64(4), 283-290.
dcterms.referencesLeyte, M., Richomme, P., Poupard, P & Peña, L. (2020). Identification and Quantification of a Phytotoxic Metabolite from Alternaria dauci. Molecules (Basel, Switzerland), 25(17), 40-60.
dcterms.referencesLiu, X., Zhao, D., Ou, C., Hao, W., Zhang, Y., He, Y., et al. (2022). Draft Genome Sequence of Carrot Alternaria Leaf Blight Pathogen Alternaria dauci. Plant Disease, 6(4), 1-11.
dcterms.referencesMarcuzzo, L. & Tomasoni, C. (2019). Development of a weather-based forecasting model for Alternaria leaf blight of carrot. Summa Phytopathologica, 45(4), 413-414.
dcterms.referencesMitter, B., Pfaffenbichler, N., Flavell, R., Compant, S., Antonielli, L., Petric, A., et al. (2017). A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology, 8(2), 1-11.
dcterms.referencesNational Agricultural Statistics Service Information. (2016). State agriculture overview, Retrieved. https://www.nass.usda.gov/
dcterms.referencesOjito, K., Cupull, R. & Portal, O. (2020). Efecto sobre la microbiota del suelo de extractos de Citrus spp. con actividad antifúngica. Centro Agrícola, 47(4), 12-16.
dcterms.referencesOrozco, M., Rocha, M., Glick, B. & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 4(2), 25–31.
dcterms.referencesQessaoui, R., Bouharroud, R., Furze, J., El Aalaoui, M., Akroud, H., Amarraque, A., et al., (2019). Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports, 9(1), 1-10.
dcterms.referencesQue, F., Hou, X., Wang, L., Xu, S., Tan, F., Li, T. et al. (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 4(6), 10- Rodríguez, J., Cárdenas, M. & Jiménez, P. (2013). Especies de Alternaria de La Sabana de Bogotá, Colombia. Revista Facultad de Ciencias Básicas, 9(2), 228-247.
dcterms.referencesRodríguez, K. (2022). Biorremediación mediante Trichoderma spp., Pseudomonas fluorescens y Bacillus subtilis para reducir concentraciones de Cadmio en Espárrago. Tesis de grado. Universidad Nacional Agraria la Molina. Lima, Perú
dcterms.referencesSaboya, J. (2019). Asistencia técnica y transferencia de tecnologías en el sistema productivo de zanahoria (Daucus carota), integrando la metodología participativa (PIPA) en el Municipio de Villapinzón Cundinamarca. Tesis doctoral. Universidad Pontificia Bolivariana. Medellín, Colombia.
dcterms.referencesSantoyo, G., Moreno, G., Del Carmen Orozco, M. & Glick, B. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183(2), 92-99.
dcterms.referencesSharma, M., Saini, I., Kaushik, P., Aldawsari, M, Al Balawi, T. & Alam, P. (2021). Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi Journal of Biological Sciences, 28(7), 3685-3691.
dcterms.referencesTamosiune, I., Baniulis, D. & Stanys, V. (2017). Role of endophytic bacteria in stress tolerance of agricultural plants: diversity of microorganisms and molecular mechanisms. Burkholderia Phytofirmans, 72(2), 1-15.
dcterms.referencesTöfoli, J., Domingues, R. & Tortolo, P. (2019). Effect of various fungicides in the control of Alternaria Leaf Blight in carrot crops. Brazilian Journal of São Paulo, 81(2), 1-30. Vasileva, E., Akhtemova, G., Zhukov, V. & Tikhonovich, I. (2019). Endophytic microorganisms in fundamental research and agriculture. Ecological Genetics, 17(1), 19-32
dcterms.referencesZafar, M., Abrar, M., Umar, M., Bahoo, M. & Ahmad, N. (2017). Screening of different carrot varieties against Alternaria leaf blight and its chemical management. Researcher, 9(2), 8-14.
dcterms.referencesZafar, M., Firdous, H. & Mushtaq, M. (2018). A review on Alternaria leaf blight of carrot. The International Journal of Biological Research, 4(2), 1-23.
dc.description.notesArchivo Medios Electrónicosspa
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero(a) Biotecnológico(a)spa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander
dc.identifier.reponamereponame:Repositorio Digital UFPS
dc.identifier.repourlrepourl:https://repositorio.ufps.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias y del Ambientespa
dc.publisher.programIngeniería Biotecnológicaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMicroorganismosspa
dc.subject.proposalCultivosspa
dc.subject.proposalEnfermedadesspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.signatureTIB V00076/2023spa
dc.contributor.juryIbarra Vega, Danny Waldir
dc.contributor.juryArguello Navarro, Adriana Zulay
dc.contributor.juryRamírez Caicedo, Lilian Trinidad
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)