Show simple item record

dc.contributor.advisorVanegas Herrera, Sergio Andrés
dc.contributor.authorUlloa Cuervo, Carlos Arturo
dc.contributor.authorDominguez Acero, Jhon Edinson
dc.contributor.authorPadilla García, Oscar Manuel
dc.date.accessioned2024-05-16T15:09:09Z
dc.date.available2024-05-16T15:09:09Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7338
dc.description.abstractEsta investigación se basó en un tema de confiabilidad estructural para la aplicación enfocada a edificaciones y puentes. Para ello, se implementó una investigación tipo documental y la información fue suministrada por la base de datos de la UFPS. Se logró conceptualizar el tema de confiabilidad estructural, partiendo de lo general hasta llevarlo a lo particular. Posteriormente, se indagó sobre las aplicaciones realizadas en el tema de confiabilidad a nivel nacional e internacional. Finalmente, se determinó hasta donde se ha llevado la investigación de la confiabilidad estructural a nivel nacional en comparación al nivel internacional.spa
dc.description.tableofcontentspág. Introducción 17 1. Problema 19 1.1 Titulo 19 1.2 Planteamiento del Problema 19 1.3 Formulación del Problema 19 1.4 Objetivos 20 1.4.1 Objetivo general 20 1.4.2 Objetivos específicos 20 1.5 Justificación 20 1.6 Alcance y Limitaciones 20 1.6.1 Alcance 20 1.6.2 Limitaciones 21 2. Algunos Conceptos de Confiabilidad y Probabilidad de Falla 22 2.1 Aspectos Generales 22 2.2 Concepto de Incertidumbre 25 2.3 Enfoques de la Confiabilidad Estructural 28 2.3.1 Enfoque determinístico 29 2.3.2 Enfoque semi-probabilístico 30 2.3.3 Enfoque probabilística 30 2.4 Medidas Determinísticas del Factor de Seguridad 32 2.4.1 Factor de seguridad 32 2.4.2 Invarianza del factor de seguridad 34 2.5 Medidas Probabilísticas del Factor de Seguridad 34 2.5.1 Factor de seguridad central 35 2.5.2 Factor de seguridad característico 33 3. Diseño Metodológico 37 3.1 Población y Muestra 37 3.1.1 Población 37 3.2 Instrumentos para la Recolección de Información 35 3.3 Técnicas de Análisis y Procesamiento de Datos 38 3.4 Fases y Actividades Específicas del Proyecto 38 4. Marco Teórico: Teoría de Confiabilidad Estructural, Definición del Índice de Confiabilidad  y Métodos de Cálculo de la Probabilidad 37 4.1 Generalidades 39 4.2 Índice de Confiabilidad 45 4.3 Factores de Seguridad en Formato de Factores Parciales 52 4.3.1 Factores parciales basados en valores centrales 54 4.3.2 Factores parciales basados en valores característicos 56 5. Marco Teórico: “Simulación de Montecarlo” 57 5.1 Generación de Números Aleatorios 59 5.1.1 Generación de números aleatorios no correlacionados 60 5.2 Extracción de la Información Estadística y Probabilística 61 5.3 Cálculo de la Probabilidad de Falla 62 5.4 Precisión de la Simulación 63 5.4.1 Alternativa 1 63 5.4.2 Alternativa 2 64 5.4.3 Alternativa 3 64 5.5 Técnicas de Reducción de Varianza 65 6. Aplicaciones de la Confiabilidad Estructural 67 6.1 Aplicaciones en Sistemas y Elementos Simples y Complejos de Tipo Estructural 67 6.1.1 Reliability Engineering and System Safety 67 6.1.2 An efficient approach for high-dimensional structural reliability analysis 68 6.1.3 Decision making for probabilistic fatigue inspection planning based on multiobjective optimization 70 6.1.4 Reliability analysis of deteriorating structural systems 72 6.1.5 Multi-objective reliability based design optimization of coupled acousticstructural system 74 6.1.6 Reliability-based Robust Design Optimization with the Reliability Index Approach applied to composite laminate structures 76 6.1.7 Seismic reliability-based robustness assessment of three-dimensional reinforced concrete systems equipped with single-concave sliding devices 78 6.1.8 Optimal and acceptable reliabilities for structural design 79 6.1.9 Methodology for assessing the probabilistic condition of an asset based in concepts of structural reliability “PCBM - Probabilistic Condition Based Maintenance” 80 6.1.10 System reliability-based direct design method for space frames with cold– formed steel hollow sections 82 6.1.11 Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability 83 6.1.12 Probabilistic methods for planning of inspection for fatigue cracks in offshore structures 86 6.1.3 Detailed seismic risk analysis of buildings using structural reliability methods 88 6.1.14 Seismic reliability analysis of a timber steel hybrid system 91 6.1.15 Seismic reliability-based design of inelastic base-isolated structures with leadrubber bearing systems 94 6.1.16 Reliability analysis of FRP strengthened RC beams considering compressive membrane action 95 6.1.17 Reliability analysis of H-section steel columns under blast loading 97 6.1.18 Stochastic harmonic function based wind field simulation and wind-induced reliability of super high-rise buildings 100 6.1.19 Structural reliability analysis with fuzzy random variables using error principle. 101 6.1.20 Structural reliability of biaxial loaded Short/Slender-Square FRP-confined RC columns 103 6.2 Aplicaciones y Análisis de Confiabilidad en Estructuras Tipo Puente y sus Elementos 105 6.2.1 Structural reliability of bridges realized with reinforced concretes containing electric arc furnace slag aggregates 105 6.2.2 Global sensitivity analysis of reliability of structural bridge system 107 6.2.3 Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connections 109 6.2.4 Information-dependent seismic reliability assessment of bridge networks based on a correlation model 112 6.2.5 A probability-based reliability assessment approach of seismic base-isolated bridges in cold regions 114 6.2.6 Reliability-based progressive collapse analysis of highway bridges 116 6.2.7 Time-dependent reliability of strengthened PSC box-girder bridge using phased and incremental static analyses 117 6.2.8 Time-dependent reliability assessment of existing concrete bridges including non-stationary vehicle load and resistance processes 120 6.2.9 Probabilistic reliability framework for assessment of concrete fatigue of existing RC bridge deck slabs using data from monitoring 122 6.2.10 The importance of correlation among flutter derivatives for the reliability based optimum design of suspension bridges 123 6.2.11 Performance-based reliability analysis of bridge pier subjected to vehicular collision: extremity and failure 126 6.2.12 An efficient method of system reliability analysis of steel cable-stayed bridges 128 6.2.13 Target reliability for bridges with consideration of ultimate limit state 131 6.3 Aplicaciones y Análisis de Confiabilidad en Estructuras tipo Puente a Nivel Nacional 133 6.3.1 Estudio puente Puerto Salgar 133 6.3.2 Estudio viaducto Cesar Gaviria Trujillo 141 6.3.3 Desarrollo de un algoritmo computacional para la estimación de la tensión de cables en puentes atirantados, con base en la medición experimental en laboratorio y campo de sus modos y frecuencias naturales de vibración 147 6.3.4 Estudio del comportamiento dinámico del viaducto portachuelo basado en medición de vibraciones ambientales 155 7. Conclusiones 164 Referencias Bibliográficas 166spa
dc.format.extent176 páginas. ilustraciones, (Trabajo Completo) 2.939 KBspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Francisco de Paula Santanderspa
dc.rightsDerechos Reservados - Universidad Francisco de Paula Santandereng
dc.sourcehttps://catalogobiblioteca.ufps.edu.co/descargas/tesis/1010067_1010063_1010068.pdfspa
dc.titleEstado del arte en la conceptualización y aplicación del tema confiabilidad estructuralspa
dc.typeTrabajo de grado - Especializaciónspa
dcterms.referencesAghababaei, M. & Mahsuli, M. (2018). Detailed seismic risk analysis of buildings using structural reliability methods. Probabilistic Engineering Mechanics, 53(1), 23–38.spa
dcterms.referencesAli, O. (2017). Structural reliability of biaxial loaded Short/Slender-Square FRP-confined RC columns. Construction and Building Materials, 151(2), 370–382.spa
dcterms.referencesAmerican Association of State Highway and Transportation Officials. (2012). AASHTO LRFD Brides: Design Especifications. United States of America: AASHTOspa
dcterms.referencesAng, A. & Tang, W. (2007). Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering. Wiley. Recuperado de: https://www.wiley.com/enus/Probability+Concepts+in+Engineering%3A+Emphasis+on+Applications+to+Civil+and+E nvironmental+Engineering%2C+2e+Instructor+Site-p-9780471720645spa
dcterms.referencesAsociación Colombiana de Ingeniería Sísmica. (1995). Código Colombiano de Diseño Sísmico de Puentes CCDSP-95. Bogotá: Asociacion Colombiana de Ingeniería Sísmica ACISspa
dcterms.referencesAu, S. (2001). On the solution of first excursion problems by simulation with applications toprobabilistic seismic performance assessment. Tesis doctoral. California Institute of Technology. Pasaena, California.spa
dcterms.referencesAu, S. Ching, J., & Beck. J. (2007). Application of subset simulation methods to reliability benchmark problems. Structural Safety, 29(3), 183-193.spa
dcterms.referencesAvellaneda, G. (2011). Desarrollo de un algoritmo computacional para la estimación de la tensión de cables en puentes atirantados con base en la medición experimental en laboratorio y campo de sus modos y frecuencias naturales de vibración. Revista Ingeniería de Construcción, 27(3), 1-17.spa
dcterms.referencesBaez, D. (2007). Matlab: Con aplicaciones a la Ingeniería, físcia y finanzas. México: AlfaOmega.spa
dcterms.referencesBlockley, D. (1992). Engineering safety. Bristol: Mcgraw-Hil.spa
dcterms.referencesBruce, E. (2000). LRFD: Implementing structural reliability in professional practice. Engineering Structures, 22(2), 106-115.spa
dcterms.referencesCardoso, J., De Almeida, J., Dias, J. & Coelho, P. (2008). Stuctural Reliability analysis using Monte Carlo simulation and neural networks. Advances in Engineering Software, 39(6), 505- 513.spa
dcterms.referencesCastaldo, P., Mancini, G. & Palazzo, B. (2018). Seismic reliability-based robustness assessment of three-dimensional reinforced concrete systems equipped with single-concave sliding devices. Engineering Structures, 163(2), 373–387.spa
dcterms.referencesChen, J., Chen, Y., Peng, Y., Zhu, S., Beer, M. & Comerford, L. (2019). Stochastic harmonic function based wind field simulation and wind-induced reliability of super high-rise buildings. Mechanical Systems and Signal Processing, 133(1), 106-264.spa
dcterms.referencesChevrolet. (s.f.). Chevrolet Colombia. Recuperado de: http://www.chevrolet.com.co/vehiculos/buses-camiones/showroom_camiones.htmlspa
dcterms.referencesCoronel, M. (2003). Calibración Basada en Confiabilidad de la primera hipótesis de diseño de la norma tecnica E060. Tesis de grado. Universidad de Piura. Piura, Perú.spa
dcterms.referencesCrespo, C. & Casas, J. (1997). A comprehensive traffic load model for bridge safety checking. Structural Safety, 19(4), 339-359. Recuperado de: https://www.sciencedirect.com/science/article/abs/pii/S0167473097000167spa
dcterms.referencesDammak, D. & El Hami, A. (2019.). Multi-objective reliability based design optimization of coupled acoustic-structural system. Engineering Structures, 197(2), 109-389.spa
dcterms.referencesDas, D. & Conceição, C. (2019). Reliability-based Robust Design Optimization with the Reliability Index Approach applied to composite laminate structures. Composite Structures, 4(1), 844–855.spa
dcterms.referencesDu, X. (2005). Chapter 7: First Order and Second Reliability Methods, in Probabilistic Engineering Design. Missouri: University of Missouri.spa
dcterms.referencesEldred, M. & Bichon, B. (2006). Second-Order Reliability Formulations in DAKOTA/UQ. Newport, Rhode Island: Structural Dynamics, and Materials Confere.spa
dcterms.referencesEllingwood, B. & Galamabos, T. (1983). Probability-Based Load Criteria for Structural Desing. Structural Safety, 1(1), 1982–1983.spa
dcterms.referencesEllingwood, B. (1982). Probability based load criteria: load factors and combinations. Journal of the Structural Division, 4(108), 1-16.spa
dcterms.referencesEllingwood, B. (2000). LRFD: Implementing structural reliability in professional practice. Engineering Structures, 22(2), 106-115spa
dcterms.referencesEllingwood, B., Macgregor, J., Galambos, T. & Allin, C. (1982). Probability based load criteria: load factors and combinations. J. Structural Division, 108(5), 1-15.spa
dcterms.referencesEuropean Committee for Standardisation. (2002). Basis of structural desing. Load of Bridge, 4(3), 1-15.spa
dcterms.referencesFaber, M. (2001). Methods of Structural Reliability theory - an Introduction: Lecture Notes on Risk and Reliability in Civil Engineering. Zurich, Switzerland: Swiss Federal Institute of Technology.spa
dcterms.referencesFaber, M. (2003). Basic of Structural Reliability. Zurich, Switzerland: Swiss Federal Institute of Technology ETH.spa
dcterms.referencesFaber, M. (2009). Basics Of Structural Reliability. Zurich: Draft. Swiss Fed.spa
dcterms.referencesFischer, K., Viljoen, C., Köhler, J. & Faber, M. (2019). Optimal and acceptable reliabilities for structural design. Structural Safety, 76(2), 149–161.spa
dcterms.referencesFreudenthal, A. (1956). Safety and the Probability of Structural Failure. Transactions of the American Society of Civil Engineers, 121(1), 337-1375.spa
dcterms.referencesGhasemi, S. & Nowak, A. (2017). Target reliability for bridges with consideration of ultimate limit state. Engineering Structures, 152(1), 226–237.spa
dcterms.referencesGonzález, V., Botero, J., Rochel, R., Vidal, J. & Álvarez, M. (2005). Propiedades Mecanicas del Acero de refuerzo utilizado en Colombia. Ingeniería y Ciencia, 67(1), 67-76. https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/504spa
dcterms.referencesGuo, T., Chen, Z., Liu, T. & Han, D. (2016). Time-dependent reliability of strengthened PSC box-girder bridge using phased and incremental static analyses. Engineering Structures, 117(2), 358–371.spa
dcterms.referencesHadianfard, M., Malekpour, S. & Momeni, M. (2018). Reliability analysis of H-section steel columns under blast loading. Structural Safety, 75(2), 45–56spa
dcterms.referencesHaldar, A. & Mahadevan, S. (2000). Probability, Reliability and Statistical Methods in Engineering Design. Mahadevan: Jonh Wiley.spa
dcterms.referencesHasofer, A. & Lind, N. (1973). An Exact and Invariant First-order Reliability Format. Solid Mechanics Division. Waterloo, Canadá: University of Waterloo.spa
dcterms.referencesHasofer, A. & Lind, N. (1973). An exact and invariant first-order reliability format. Waterloo, Ont: Solid Mechanics Division.spa
dcterms.referencesHosseini, P., Ghasemi, S., Jalayer, M. & Nowak, A. (2019). Performance-based reliability analysis of bridge pier subjected to vehicular collision: Extremity and failure. Engineering Failure Análisis, 106(1), 104-176.spa
dcterms.referencesHurtado, J. (2004). Structural Reliability, Statistical Learning Perspectives. Lecture notes in applied. Germany: Springer.spa
dcterms.referencesInstituto Colombiano de Normas Técnicas y Certificación. (1997). NTC 2275. Ingeniería Civil y Arquitectura. Procedimiento recomendado para la evaluación de los resultados de los ensayos de resistencia de concreto. Bogotá: ICONTECspa
dcterms.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2000). NTC 4788-1. Tipologia de vehículos de transporte terrestre. Bogotá: ICONTEC.spa
dcterms.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2000). NTC 4788-1. Tipologia de vehículos de transporte terrestre. Bogotá: ICONTEC.spa
dcterms.referencesInstituto Nacional de Vías. (s.f.). Volúmenes de transito 2008. Recuperado de: http://www.invias.gov.co/index.php/documentos-tecnicos-izqspa
dcterms.referencesInsua, D., Insua, S., Martin, A. & Jiménez, J. (2008). Simulación Métodos y aplicaciones. Andalucía: RA-MA S.A Editorial y Publicaciones.spa
dcterms.referencesIrvine, M. (1981). Cable structures. Boston, Massachussets. United States of America: The Massachusetts Institute of Technology.spa
dcterms.referencesJaimes, G. (2003). Analysis of Traffic Load Effects on Railway Bridges. Estocolmo, Suecia: Royal Institute of Technology.spa
dcterms.referencesKala, Z. (2019). Global sensitivity analysis of reliability of structural bridge system. Engineering Structures, 194(2), 36–45.spa
dcterms.referencesKalos, M. & Whitlock, P. (2008). Monte Carlo Methods. Recuperado de: https://www.wiley.com/en-us/Monte+Carlo+Methods%2C+2nd+Edition-p-9783527407606spa
dcterms.referencesKim, S. & Frangopol, D. (2018). Decision making for probabilistic fatigue inspection planning based on multi-objective optimization. International Journal of Fatigue, 111(2), 356-368.spa
dcterms.referencesKim, S. & Wen, Y. (1987). Realiability-based structural optimization under stochastic time varying loads. Tesis doctoral. University of Illinois at Urbana-Champaing. Champaign, IL, Estados Unidos.spa
dcterms.referencesKim, S. & Wen, Y. (1987). Reliability-based structural optimization under stochastic time varying loads. Recuperado de: https://www.ideals.illinois.edu/items/14157spa
dcterms.referencesKusano, I., Baldomir, A., Jurado, J. & Hernández, S. (2018). The importance of correlation among flutter derivatives for the reliability based optimum design of suspension bridges. Structural Engineering, 173(1), 416–428.spa
dcterms.referencesLemaire, M., Chateauneuf, A. & Mitteau, J. (2009). Preliminary Approach to Reliability in Mechanics. Structural Reliability, 4(1), 1-15.spa
dcterms.referencesLi, H. & Nie, X. (2018). Structural reliability analysis with fuzzy random variables using error principle. Engineering Applications of Artificial Intelligence, 67(1), 91–99.spa
dcterms.referencesLiu, W., Zhang, H. & Rasmussen, K. (2018). System reliability-based Direct Design Method for space frames with cold–formed steel hollow sections. Engineering Structures, 166(1), 79–92.spa
dcterms.referencesLotsberg, I., Sigurdsson, G., Fjeldstad, A. & Moan, T. (2016). Probabilistic methods for planning of inspection for fatigue cracks in offshore structures. Marine Structure, 46(1), 167–192.spa
dcterms.referencesMankar, A., Bayane, I., Sørensen, J. & Brühw, E. (2019). Probabilistic reliability framework for assessment of concrete fatigue of existing RC bridge deck slabs using data from monitoring. Engineering Structures, 201(2), 109-788.spa
dcterms.referencesMarek, P (2001). Probabilistic assessment of structures using Monte Carlo Simulation: background, exercises and spftware. Institut of Theoretical and Applied Mechanics, 4(2), 1- 15.spa
dcterms.referencesMarek, P., Brozzetti, J., Gustar, M., & Tikalsky, P. (2003). Probabilistic Assessment of Structures using MonteCarlo Simulation. Recuperado de: https://www.semanticscholar.org/paper/Probabilistic-assessment-of-structures-using-MonteMarek-Brozzetti/f93415bc8aa5d899b7ea7271de2c6d71a3ccf9af#related-papersspa
dcterms.referencesMarques, F., Correia, J., De Jesús, M., Cunha, A., Caetano, E. & Fernández, A. (2018). Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connections. Engineering Failure Analysis, 94(1), 121–144spa
dcterms.referencesMarquez, J. (2011). Variabilidad estadistica de cargas vivas en edificios. Ecomatematico, 2(1), 27-33.spa
dcterms.referencesMartínez, A. (2005). Confiabilidad del puente Cáceres de Piura ante eventos del fenomeno del niño. Tesis pregrado. Universidad de Piura. Piura, Perú.spa
dcterms.referencesMelchers, R. (1999). Structural Reliability Analysis and Prediction. England: John Wiley and Sons.spa
dcterms.referencesMiao, F. & Ghosn, M. (2017). Reliability-Based Dynamic Analysis of Progressive Collapse of Highway Bridges. Procedia Engineering, 199(4), 1170–1174.spa
dcterms.referencesMoses, F. (2001). NCHRP REPORT 454: Calibration of Load Factors LRFR Bridge Evaluation. Washington: National Research Council.spa
dcterms.referencesMuñoz, E. (2006). Confiabilidad estructural de un puente en acero apoyada en monitoreo e instrumentación. Ingeniería y Universidad, 10(1), 31-54.spa
dcterms.referencesMuñoz, E. (2009). Vulnerabilidad sísmica y Capacidad de carga de un puente atirantado basados en confiabilidad estructural. Ingenieria de Construcción, 4(1), 1-15.spa
dcterms.referencesMuñoz, E. (2012). Ingeniería de puentes. Bogotá: Gente Nueva.spa
dcterms.referencesNassar, M., Guizani, L., Nollet, M. & Tahan, A. (2019). A probability-based reliability assessment approach of seismic base-isolated bridges in cold regions. Engineering Structures, 197(1), 109-353.spa
dcterms.referencesNational Cooperative Highway Research Program. (2001). Calibration of Load Factors for LFRD Bridge Evaluation - Report 454. Washington: NCHRPspa
dcterms.referencesNeves, A., Gomes, S., Dias, S. & Fernández, P. (2019). Time-dependent reliability analyses of prestressed concrete girders strengthened with CFRP laminates. Engineering Structures, 196(2), 109-297spa
dcterms.referencesNordic Committee on Building Regulations. (1987). Guidelines for loading and safety regulations for structural design. Stockholm: NKB Committee and Works Reports, Report No. 55E.spa
dcterms.referencesPáez, D. (2007). Diseño Simplificado de Puentes. Bogotá: INVIAS.spa
dcterms.referencesQin, J. (2018). Information-dependent seismic reliability assessment of bridge networks based on a correlation model. Engineering Structures, 176(2), 314–323.spa
dcterms.referencesRashki, M. (2018). Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability. Applied Mathematical Modelling, 60(1), 220–234.spa
dcterms.referencesReuven, Y. & Dirk, P. (2007). Simulation and the Monte Carlo Method. Nueva York: Wiley.spa
dcterms.referencesRíos, D. (2009). Simulación: Métdos y Aplicaciones. México: AlfaOmega.spa
dcterms.referencesRubinstein, R. &. Kroese, D. (2008). Simulation and the Monte Carlo Method. Nueva York: Wileyspa
dcterms.referencesSánchez, M. (2005). Introducción a la Confiabilidad y Evaluación de Riesgos. Bogotá: Ediciones Uniandes.spa
dcterms.referencesSánchez, M. (2010). Introducción a la Confiabilidad y Evaluación de Riesgos. Bogotá: Universidad de los Andes.spa
dcterms.referencesSchöbi, R. & Sudret, B. (2017). Structural reliability analysis for p-boxes using multi-level metamodels. Probabilistic Engineering Mechanics, 48(1), 27–38.spa
dcterms.referencesShoaei, P., Tahmasebi, H. & Zahrai. S. (2018). Seismic reliability-based design of inelastic baseisolated structures with lead-rubber bearing systems. Soil Dynamics and Earthquake Engineering, 115(4), 589–605.spa
dcterms.referencesStraub, D., Schneider, R., Bismut, E. & Kim, H. (2020). Reliability analysis of deteriorating structural systems. Structural Safety, 82(2), 101-877.spa
dcterms.referencesTeixeira, F. & Junior, J. (2016). Methodology for assessing the probabilistic condition of an asset based in concepts of structural reliability ‘pCBM - Probabilistic Condition Based Maintenance. Procedia Structural Integrity, 1(2), 181–188.spa
dcterms.referencesTruong, V. & Kim, S. (2017). An efficient method of system reliability analysis of steel cablestayed bridges. Advances in Engineering Software, 114(1), 295–311.spa
dcterms.referencesUribe, F. (2012). Implementation of simulation methods in structural reliability. Manizales: Universidad Nacional de Colombia.spa
dcterms.referencesVallecilla, C. (2004). Curso de Puentes en Concreto. Bogotá: Bauen.spa
dcterms.referencesWang, C., Zhang, H. & Li, Q. (2019). Moment-based evaluation of structural reliability. Reliability Engineering & System Safety, 181(1), 38-45.spa
dcterms.referencesWhitney, C. (1956). Guide for Ultimate Strength Design of Reinforced Concrete. Engineering Structures, 53(1), 455-475spa
dcterms.referencesWittfotht, H. (1975). Puentes. Ejemplos internacionales. Barcelona: Gustavo Gili.spa
dcterms.referencesYuan, Y., Han, W., Li, G., Xie, Q. & Guo, Q. (2019). Time-dependent reliability assessment of existing concrete bridges including non-stationary vehicle load and resistance processes. Engineering Structures, 197(1), 109-426.spa
dcterms.referencesZanini, M. ( 2019). Structural reliability of bridges realized with reinforced concretes containing electric arc furnace slag aggregates. Engineering Structures, 188(2), 305–319.spa
dcterms.referencesZeng, Y., Botte, W. & Caspeele, R. (2018). Reliability analysis of FRP strengthened RC beams considering compressive membrane action. Construction and Building Materials, 169(2), 473–488.spa
dcterms.referencesZhang, X. Shahnewaz, M. & Tannert. T. (2018). Seismic reliability analysis of a timber steel hybrid system. Engineering Structures, 167(2), 629–638.spa
dcterms.referencesZheng, K., Kaewunruen, S., Zhu, J., Heng, J. & Baniotopoulos. C. (2019). Dynamic Bayesian network-based system-level evaluation on fatigue reliability of orthotropic steel decks. Engineering Failure Análisis, 105(2), 1212–1228.spa
dcterms.referencesZhu, S. & Xu, J. (2019). An efficient approach for high-dimensional structural reliability analysis. Mechanical Systems and Signal Processing, 122(1), 152–170.spa
dc.contributor.corporatenameUniversidad Francisco de Paula Santanderspa
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Estructurasspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeSan José de Cúcutaspa
dc.publisher.programEspecialización en Estructurasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembEstado del arte
dc.subject.lembConfiabilidad -- Estructural
dc.subject.lembPuentes
dc.subject.proposalEstado del arteeng
dc.subject.proposalConfiabilidad estructuralspa
dc.subject.proposalEdificaciones y puentesspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/otherspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.juryCáceres Rubio, José Rafael
dc.contributor.juryVanegas Herrera, Sergio Andrés
dc.contributor.juryMárquez Peñranada, Jorge Fernando


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record