Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez, Manuel Alejandro
dc.contributor.authorFiscal Ladino, Jhon Alexander
dc.date.accessioned2024-04-30T16:28:11Z
dc.date.available2024-04-30T16:28:11Z
dc.date.issued2023-03-26
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7098
dc.description.abstractNew natural reducing agents with a lower negative impact on the environment and with a high antimicrobial potential are required for the process of obtaining silver nanoparticles through the chemical reduction method. The use of plant extracts can be a fast track in the formation of nanoparticles. In this case, organic compounds such as terpenes, flavonoids, enzymes, proteins, and cofactors present in plants act as reducing agents for nanomaterials. This research evaluated the antimicrobial property of silver nanoparticles from extracts of Crescentia cujete L. The presence of quercetin (flavonoid) was determined by high-performance liquid chromatography (HPLC); the production of silver nanoparticles (AgNPs) was established by green synthesis; the size and morphology of the nanomaterials were evaluated by scanning electron microscope (SEM). The antimicrobial capacity was studied by two analysis methods: modified culture medium and surface seeding. The presence of quercetin (26.55 mg L-1) in the crude extract of Crescentia cujete L., identified by HPLC, was evidenced. Nanoparticle formation was spherical, with an average size of 250 ± 3 and 460 ± 6 nm. Microbiological cultures with treatment showed 94% microbial inhibition. It was concluded that the Crescentia cujete L., leaves shoed an acceptable concentration of quercetin to be used as a useful adjuvant to enhance the reduction of NPs synthesis. The nanoparticles produced by green synthesis proved to have a positive effect to combat pathogenic microorganismseng
dc.format.extent8 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBrazilian Journal of Biologyspa
dc.relation.ispartofBrazilian Journal of Biology, 2024, vol. 84, e270215 | https://doi.org/10.1590/1519-6984.270215
dc.rightsEstá bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scielo.br/j/bjb/a/bKjsqJFdjk5Gnrn9tSsBLzD/spa
dc.titleAntimicrobial evaluation of silver nanoparticles using extracts of Crescentia cujete L.eng
dc.typeArtículo de revistaspa
dcterms.referencesADAMS, D.J., 2004. Fungal cell wall chitinases and glucanases. Microbiology vol. 150, no. 7, pp. 2029-2035. http://dx.doi. org/10.1099/mic.0.26980-0. PMid:15256547.spa
dcterms.referencesAHMAD, N., SHARMA, S., SINGH, V.N., SHAMSI, S.F., FATMA, A. and MEHTA, B.R., 2011. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnology Research International, vol. 2011, pp. 454090. http://dx.doi.org/10.4061/2011/454090. PMid:21350660.spa
dcterms.referencesAN, H.R., MAINELIS, G. and WHITE, L., 2006. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment, vol. 40, no. 40, pp. 7924-7939. http://dx.doi.org/10.1016/j. atmosenv.2006.07.020.spa
dcterms.referencesANBUKKARASI, V., SRINIVASAN, R. and ELANGOVAN, N., 2015. Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. International Journal of Pharmaceutical Sciences Review and Research, vol. 33, no. 2, pp. 110-115.spa
dcterms.referencesARITONANG, H.F., KOLEANGAN, H. and WUNTU, A.D., 2019. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology, vol. 2019, pp. 8642303. http://dx.doi. org/10.1155/2019/8642303. PMid:31354833.spa
dcterms.referencesBALOGUN, F.O. and SABIU, S., 2021. A review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia cujete L. (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 6683708. http://dx.doi.org/10.1155/2021/6683708. PMid:34306151.spa
dcterms.referencesBANKAR, A., JOSHI, B., KUMAR, A.R. and ZINJARDE, S., 2010. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, vol. 368, no. 1-3, pp. 58-63. http://dx.doi. org/10.1016/j.colsurfa.2010.07.024.spa
dcterms.referencesBASSANI, D.C., NUNES, D.S. and GRANATO, D., 2014. Optimization of phenolics and flavonoids extraction conditions and antioxidant activity of roasted yerba-mate leaves (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using response surface methodology. Anais da Academia Brasileira de Ciências, vol. 86, no. 2, pp. 923-934. http://dx.doi.org/10.1590/0001-3765201420130019. PMid:30514021.spa
dcterms.referencesBORREGO, S., PONS, V. and PERDOMO, I., 2008. La contaminación microbiana del aire en dos depósitos del Archivo Nacional de la República de Cuba. Revista CENIC Ciencias Biológicas, vol. 39, no. 1, pp. 63-69.spa
dcterms.referencesCASTRO BATIOJA, K.A., 2018. Elaboración de nanopartículas de plata vía síntesis y compuestos orgánicos de púnica granatum y catálisis bacteriana de Escherichia coli, Staphylococcus aureus y Aspergillus niger. Equador: Facultad de Ingeniería Química, Universidad de Guayaquil. Tesis Maestríaspa
dcterms.referencesCHANDRAN, S.P., CHAUDHARY, M., PASRICHA, R., AHMAD, A. and SASTRY, M., 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology Progress, vol. 22, no. 2, pp. 577-583. http://dx.doi.org/10.1021/ bp0501423. PMid:16599579.spa
dcterms.referencesCORREA, S.N., NARANJO, A.M. and HERRERA, A.P., 2016. Biosynthesis and characterization of gold nanoparticles using extracts of Tamarindus indica L leaves. Journal of Physics: Conference Series, vol. 687, no. 1, pp. 012082. http://dx.doi.org/10.1088/1742- 6596/687/1/012082.spa
dcterms.referencesDAS, N., ISLAM, M.E., JAHAN, N., ISLAM, M.S., KHAN, A., ISLAM, M.R. and PARVIN, M.S., 2014. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complementary and Alternative Medicine, vol. 14, no. 1, pp. 45. http://dx.doi. org/10.1186/1472-6882-14-45. PMid:24495381.spa
dcterms.referencesDUBEY, S.P., LAHTINEN, M. and SILLANPÄÄ, M., 2010. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, vol. 364, no. 1-3, pp. 34-41. http:// dx.doi.org/10.1016/j.colsurfa.2010.04.023.spa
dcterms.referencesGRAILY-MORADI, F., MAADANI MALLAK, A. and GHORBANPOUR, M., 2020. Biogenic synthesis of gold nanoparticles and their potential application in agriculture. In: M. GHORBANPOUR,P. BHARGAVA, A. VARMA and D. CHOUDHARY, eds. Biogenic nano-particles and their use in agro-ecosystems. Singapore: Springer, pp. 187-204.spa
dcterms.referencesHUANG, J., LI, Q., SUN, D., LU, Y., SU, Y., YANG, X. and CHEN, C., 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, vol. 18, no. 10, pp. 105104. http://dx.doi.org/10.1088/0957-4484/18/10/105104.spa
dcterms.referencesKHAN, M., KHAN, M., ADIL, S.F., TAHIR, M.N., TREMEL, W., ALKHATHLAN, H.Z. and SIDDIQUI, M.R.H., 2013. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, vol. 8, pp. 1507-1516. PMid:23620666.spa
dcterms.referencesKUMAR, M.A., YUSUF, C. and CHAND, B.U., 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, vol. 31, pp. 346-356. http://dx.doi.org/10.1016/j. biotechadv.2013.01.003. PMid:23318667.spa
dcterms.referencesLEVCHENKO, L.A., GOLOVANOVA, S.A., LARIONTSEVA, N.V., SADKOV, A.P., VOILOV, D.N., SHUL’GA, Y.M. and SHESTAKOV, A.F., 2011. Synthesis and study of gold nanoparticles stabilized by bioflavonoids. Russian Chemical Bulletin, vol. 60, no. 3, pp. 426-433. http://dx.doi.org/10.1007/s11172-011-0067-1.spa
dcterms.referencesLIU, Y., WANG, H. and CAI, X., 2015. Optimization of the extraction of total flavonoids from Scutellaria baicalensis Georgi using the response surface methodology. Journal of Food Science and Technology, vol. 52, no. 4, pp. 2336-2343. http://dx.doi. org/10.1007/s13197-014-1275-0. PMid:25829617.spa
dcterms.referencesMANDRIOLI, P., 2002. Bioaerosol and biodeterioration science and technology for sustainable protection of cultural heritage. London: UCL Center for Sustainable Heritage. Technical Notes for Session, no. 78.spa
dcterms.referencesMENÉNDEZ, J.T., 2004. Los poros y los canales iónicos regulan la actividad celular. Anales de la Real Academia Nacional de Farmacia, vol. 70, no. 1, pp. 9-31.spa
dcterms.referencesNARANJO-HERRERA, A.M., CORREA-TORRES, S.N. and HERRERABARROS, A.P., 2017. Evaluación de la propiedad antimicrobial de las nanopartículas de oro sintetizadas con extractos de tamarindus indica L y mangifera indica L. Ingeniería, Investigación y Tecnología, vol. 18, no. 4, pp. 389-398. http:// dx.doi.org/10.22201/fi.25940732e.2017.18n4.034.spa
dcterms.referencesPERIASAMY, S., JEGADEESAN, U., SUNDARAMOORTHI, K., RAJESWARI, T., TOKALA, V.N.B., BHATTACHARYA, S. and NELLORE, M.K., 2022. Comparative analysis of synthesis and characterization of silver nanoparticles extracted using leaf, flower, and bark of hibiscus rosasinensis and examine its antimicrobicidal activity. Journal of Nanomaterials, vol. 2022, pp. •••. http:// dx.doi.org/10.1155/2022/8123854.spa
dcterms.referencesPÍREZ, M. and MOTA, M., 2006. Morfología y estructura bacteriana. In: UNIVERSIDAD DE LA REPÚBLICA, ed. Temas de bacteriología y virología médica. Montevideo: Oficina del Libro FEFMUR, pp. 23-42.spa
dcterms.referencesRAGHUNANDAN, D., BEDRE, M.D., BASAVARAJA, S., SAWLE, B., MANJUNATH, S.Y. and VENKATARAMAN, A., 2010. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces. B, Biointerfaces, vol. 79, no. 1, pp. 235-240. http://dx.doi.org/10.1016/j. colsurfb.2010.04.003. PMid:20451362.spa
dcterms.referencesRAI, S., SINGH, D.K. and KUMAR, A., 2021. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. Journal of Basic Microbiology, vol. 61, no. 4, pp. 267-292. http://dx.doi.org/10.1002/jobm.202000575. PMid:33522603.spa
dcterms.referencesRAMAMURTHY, C.H., PADMA, M., MAREESWARAN, R., SUYAVARAN, A., KUMAR, M.S., PREMKUMAR, K. and THIRUNAVUKKARASU, C., 2013. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, vol. 102, pp. 808-815. http://dx.doi.org/10.1016/j.colsurfb.2012.09.025. PMid:23107960.spa
dcterms.referencesSASTRY, M., AHMAD, A., KHAN, M.I. and KUMAR, R., 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, vol. 85, pp. 162-170.spa
dcterms.referencesSINGH, P., KIM, Y.J., ZHANG, D. and YANG, D.C., 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, vol. 34, no. 7, pp. 588-599. http://dx.doi. org/10.1016/j.tibtech.2016.02.006. PMid:26944794.spa
dcterms.referencesSINGHAL, G., BHAVESH, R., KASARIYA, K., SHARMA, A.R. and SINGH, R.P., 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, vol. 13, no. 7, pp. 2981-2988. http://dx.doi.org/10.1007/s11051-010-0193-y.spa
dcterms.referencesSTANKIC, S., SUMAN, S., HAQUE, F. and VIDIC, J., 2016. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology, vol. 14, no. 1, pp. 1-20. http://dx.doi.org/10.1186/s12951-016-0225-6. PMid:27776555.spa
dcterms.referencesTAKAHASHI, A. and OHNISHI, T., 2004. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station. Uchu Seibutsu Kagaku, vol. 18, no. 4, pp. 255-260. http://dx.doi. org/10.2187/bss.18.255. PMid:15858393.spa
dcterms.referencesZHENG, B., KONG, T., JING, X., ODOOM-WUBAH, T., LI, X., SUN, D. and LI, Q., 2013. Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. Journal of Colloid and Interface Science, vol. 396, pp. 138-145. http://dx.doi.org/10.1016/j. jcis.2013.01.021. PMid:23403109.spa
dc.identifier.doi10.1590/1519-6984.270215
dc.relation.citationeditionVol.84 No. (2024)spa
dc.relation.citationendpage8spa
dc.relation.citationissue(2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume84spa
dc.relation.citesSánchez MA, Fiscal Ladino JA. Antimicrobial evaluation of silver nanoparticles using extracts of Crescentia cujete L. Braz J Biol [Internet]. 2023;84:e270215. Disponible en: http://dx.doi.org/10.1590/1519-6984.270215
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalHPLCeng
dc.subject.proposalquercetineng
dc.subject.proposalnanomaterialeng
dc.subject.proposalgreen synthesiseng
dc.subject.proposalantimicrobial agenteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Está bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).
Excepto si se señala otra cosa, la licencia del ítem se describe como Está bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).