Mostrar el registro sencillo del ítem

dc.contributor.authorCarrillo, Maria Angelica
dc.contributor.authorKroeger, Axel
dc.contributor.authorCardenas, Rocio
dc.contributor.authorDiaz Monsalve, Sonia
dc.contributor.authorRunge-Ranzinger, Silvia
dc.date.accessioned2021-11-06T17:29:19Z
dc.date.available2021-11-06T17:29:19Z
dc.date.issued2021-01-09
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/707
dc.description.abstractBackground: The rapid expansion of dengue, Zika and chikungunya with large scale outbreaks are an increasing public health concern in many countries. Additionally, the recent coronavirus pandemic urged the need to get connected for fast information transfer and exchange. As response, health programmes have -among other interventions- incorporated digital tools such as mobile phones for supporting the control and prevention of infectious diseases. However, little is known about the benefits of mobile phone technology in terms of input, process and outcome dimensions. The purpose of this scoping review is to analyse the evidence of the use of mobile phones as an intervention tool regarding the performance, acceptance, usability, feasibility, cost and effectiveness in dengue, Zika and chikungunya control programmes. Methods: We conducted a scoping review of studies and reports by systematically searching: i) electronic databases (PubMed, PLOS ONE, PLOS Neglected Tropical Disease, LILACS, WHOLIS, ScienceDirect and Google scholar), ii) grey literature, using Google web and iii) documents in the list of references of the selected papers. Selected studies were categorized using a pre-determined data extraction form. Finally, a narrative summary of the evidence related to general characteristics of available mobile health tools and outcomes was produced. Results: The systematic literature search identified 1289 records, 32 of which met the inclusion criteria and 4 records from the reference lists. A total of 36 studies were included coming from twenty different countries. Five mobile phone services were identified in this review: mobile applications (n = 18), short message services (n=7), camera phone (n = 6), mobile phone tracking data (n = 4), and simple mobile communication (n = 1). Mobile phones were used for surveillance, prevention, diagnosis, and communication demonstrating good performance, acceptance and usability by users, as well as feasibility of mobile phone under real life conditions and effectiveness in terms of contributing to a reduction of vectors/ disease and improving users-oriented behaviour changes. It can be concluded that there are benefits for using mobile phones in the fight against arboviral diseases as well as other epidemic diseases. Further studies particularly on acceptance, cost and effectiveness at scale are recommended.eng
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBMC Public Healthspa
dc.relation.ispartofBMC Public Health
dc.rights© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.eng
dc.sourcehttps://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-10126-4spa
dc.titleThe use of mobile phones for the prevention and control of arboviral diseases: a scoping revieweng
dc.typeArtículo de revistaspa
dcterms.referencesMUG K, Reiner RC Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, Shirude S, Davis Weaver N, Bisanzio D, Perkins TA, Lai S, Lu X, Jones P, Coelho GE, Carvalho RG, Van Bortel W, Marsboom C, Hendrickx G, Schaffner F, Moore CG, Nax HH, Bengtsson L, Wetter E, Tatem AJ, Brownstein JS, Smith DL, Lambrechts L, Cauchemez S, Linard C, Faria NR, Pybus OG, Scott TW, Liu Q, Yu H, GRW W, Hay SI, Golding N. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854–63.spa
dcterms.referencesPan American Health Organization: Zika - Actualización Epidemiológica. 2017 https://www.paho.org/hq/dmdocuments/2017/2017-may-25-phe-actualizacion-epi-virus-zika.pdf. Accessed 12 Feb 2019.spa
dcterms.referencesWorld Health Organization: Dengue y dengue grave. (2018) http://www.who.int/mediacentre/factsheets/fs117/es. Accessed 12 Feb 2019.spa
dcterms.referencesPaixão ES, Teixeira MG, Rodrigues LC. Zika, Chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018;3(Suppl 1):e000530.spa
dcterms.referencesGulland A. Zika virus is a global public health emergency, declares WHO. BMJ. 2016;352:i657.spa
dcterms.referencesPatterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: emerging Arboviruses in the New World. West J Emerg Med. 2016;17(6):671–9. https://doi.org/10.5811/westjem.2016.9.30904.spa
dcterms.referencesAraújo HR, Carvalho DO, Ioshino RS, Costa-da-Silva AL, Capurro ML. Review Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Insects. 2015;6(2):576–94.spa
dcterms.referencesNilsson LKJ, Sharma A, Bhatnagar RK, Bertilsson S, Terenius O. Presence of Aedes and Anopheles mosquito larvae is correlated to bacteria found in domestic water-storage containers. FEMS Microbiol Ecol. 2018;94(6):fiy058.spa
dcterms.referencesVannavong N, Seidu R, Stenström TA, Dada N, Overgaard HJ. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand. Parasit Vectors. 2017;10(1):170.spa
dcterms.referencesPaul KK, Dhar-Chowdhury P, Haque CE, et al. Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS One. 2018;13(6):e0199457.spa
dcterms.referencesWu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ. 2009;407(7):2224–33.spa
dcterms.referencesAkter R, Naish S, Hu W, Tong S. Socio-demographic, ecological factors and dengue infection trends in Australia. PLoS One. 2017;12(10):e0185551.spa
dcterms.referencesWeaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69:395–408.spa
dcterms.referencesWorld Health Organization. Dengue vaccine: WHO position paper, July 2016. Wkly Epidemiol Rec. 2016;91(30):349–64.spa
dcterms.referencesNathan M. Introduction. Pathogens Glob Health. 2013;106(8):427.spa
dcterms.referencesBarrera R. Considerations for disrupting dengue virus transmission; ecology of Aedes aegypti and current (nongenetic) methods of control. Genet Control Malar Dengue. 2016:103–24.spa
dcterms.referencesLin H, Liu T, Song T, Lin L, Xiao J, Lin J, He J, Zhong H, Hu W, Deng A, Peng Z, Ma W, Zhang Y. Community involvement in dengue outbreak control: an integrated rigorous intervention strategy. PLoS Negl Trop Dis. 2016;10(8):e0004919.spa
dcterms.referencesSareen S, Gupta SK, Sood SK. An intelligent and secure system for predicting and preventing Zika virus outbreak using fog computing. Enterprise Infn Syst. 2010;11(9):1436–56.spa
dcterms.referencesSood SK, Mahajan I. Wearable IoT sensor based healthcare system for identifyingand controlling chikungunya virus. Comput Ind. 2017;91:33–44.spa
dcterms.referencesde Souza Silva GC, Peltonen LM, Pruinelli L, Yoshikazu Shishido H, Jacklin EG. Technologies to combat Aedes mosquitoes: a model based on Smart City. Stud Health Technol Inform. 2018;250:129–33.spa
dcterms.referencesBartumeus F, Oltra A, Palmer J. Citizen science: a gateway for innovation in disease-carrying mosquito management? Trends Parasitol. 2018;34(9):727–9.spa
dcterms.referencesKlasnja P, Pratt W. Healthcare in the pocket: mapping the space of mobilephone health interventions. J Biomed Inform. 2012;45(1):184–98.spa
dcterms.referencesKaindoa EW, Ngowo HS, Limwagu A, Mkandawile G, Kihonda J, Masalu JP, et al. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania. Wellcome Open Res. 2017;2:88.spa
dcterms.referencesMildon A, Sellen D. Use of mobile phones for behavior change communication to improve maternal, newborn and child health: a scoping review. J Glob Health. 2019;9(2):020425.spa
dcterms.referencesWorld Health Organization: eHealth. Available online: (2020) https://www.who.int/ehealth/en/. Accessed August 4, 2020.spa
dcterms.referencesWorld Health Organization. mHealth: New Horizons for Health through Mobile Technologies: Based on the Findings of the Second Global Survey on eHealth (Global Observatory for eHealth Series, Volume 3). 2011. http://whqlibdoc.who.int/publications/2011/9789241564250_eng.pdf. Accessed 18 Feb 2019.spa
dcterms.referencesLabrique AB, Vasudevan L, Kochi E, Fabricant R, Mehl G. mHealth innovations as health system strengthening tools: 12 common applications and a visual framework. Glob Health Sci Pract. 2013;1(2):160–71.spa
dcterms.referencesVentola CL. Mobile devices and apps for health care professionals: uses and benefits. Pharm Ther. 2014;39(5):356–64.spa
dcterms.referencesMtema Z, Changalucha J, Cleaveland S, et al. Mobile phones as surveillance tools: implementing and evaluating a large-scale intersectoral surveillance system for rabies in Tanzania. PLoS Med. 2016;13(4):e1002002.spa
dcterms.referencesCrane D, Garnett C, Brown J, West R, Michie S. Behavior change techniques in popular alcohol reduction apps: content analysis. J Med Internet Res. 2015;17(5):e118.spa
dcterms.referencesNilsson PM, Todsen T, Subhi Y, Graumann O, Nolsøe CP, Tolsgaard MG. Cost-effectiveness of mobile app-guided training in extended focused assessment with sonography for trauma (eFAST): a randomized trial. Ultraschall Med. 2017;38(6):642–7.spa
dcterms.referencesMeyer AND, Thompson PJ, Khanna A, Desai S, Mathews BK, Yousef E, Kusnoor AV, Singh H. Evaluating a mobile application for improving clinical laboratory test ordering and diagnosis. J Am Med Inform Assoc. 2018;25(7):841–7.spa
dcterms.referencesMorrissey EC, Casey M, Glynn LG, Walsh JC, Molloy GJ. Smartphone apps for improving medication adherence in hypertension: patients' perspectives. Patient Preference Adherence. 2018;12:813–22.spa
dcterms.referencesSchwebel FJ, Larimer ME. Using text message reminders in health care services: a narrative literature review. Internet Interv. 2018;13:82–104.spa
dcterms.referencesFolaranmi T. mHealth in Africa: challenges and opportunities. Perspect Public Health. 2014;134(1):14–5.spa
dcterms.referencesTomlinson M, Rotheram-Borus MJ, Swartz L, Tsai AC. Scaling up mHealth: where is the evidence? PLoS Med. 2013;10(2):e1001382.spa
dcterms.referencesCole-Lewis H, Kershaw T. Text messaging as a tool for behavior change in disease prevention and management. Epidemiol Rev. 2010;32(1):56–69.spa
dcterms.referencesHoffman JA, Cunningham JR, Suleh AJ, Sundsmo A, Dekker D, Vago F, Munly K, Igonya EK, Hunt-Glassman J. Mobile direct observation treatment for tuberculosis patients: a technical feasibility pilot using mobile phones in Nairobi, Kenya. Am J Prev Med. 2010;39(1):78–80.spa
dcterms.referencesAsiimwe C, Gelvin D, Lee E, Amor YB, Quinto E, Katureebe C, Sundaram L, Bell D, Berg M. Use of an innovative, affordable, and open-source short message service-based tool to monitor malaria in remote areas of Uganda. Am J Trop Med Hyg. 2011;85(1):26–33.spa
dcterms.referencesHamine S, Gerth-Guyette E, Faulx D, Green BB, Ginsburg AS. Impact of mHealth chronic disease management on treatment adherence and patient outcomes: a systematic review. J Med Internet Res. 2015;17(2):e52.spa
dcterms.referencesCulquichicón-Sánchez C, Ramos-Cedano E, Chumbes-Aguirre D, Araujo-Chumacero M, Díaz Vélez C, Rodríguez-Morales AJ. Information and communication technologies (ICTs): alternative or complement for surveillance, prevention and control of dengue in the Americas? Chilena Infectol. 2015;32(3):363–4.spa
dcterms.referencesArksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.spa
dcterms.referencesTricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Straus SE. PRISMA extension for scoping reviews (PRISMAScR): checklist and explanation. Ann Intern Med. 2018;169(7):467.spa
dcterms.referencesMoher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.spa
dcterms.referencesLevac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5(1):69.spa
dcterms.referencesMays N, Roberts E, Popay J. In: Fulop N, Allen P, Clarke A, Black N, editors. Synthesising research evidence. Studying the organization and delivery of health services: research methods. London: Routledge; 2001. p. 194.spa
dcterms.referencesTurel O, Serenko A. Mobile telephony as a universal service. Encyclopedia of E-Business Development and Management in the Global Economy 2010; doi: https://doi.org/10.4018/978-1-61520-611-7.ch085.spa
dcterms.referencesProctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, Griffey R, Hensley M. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Admin Pol Ment Health. 2011;38(2):65–76.spa
dcterms.referencesOsorio L, Garcia JA, Parra LG, Garcia V, Torres L, Degroote S, Ridde V. A scoping review on the field validation and implementation of rapid diagnostic tests for vector-borne and other infectious diseases of poverty in urban areas. Infect Dis Poverty. 2018;7(1):87.spa
dcterms.referencesKrick T, Huter K, Domhoff D, Schmidt A, Rothgang H, Wolf-Ostermann K. Digital technology and nursing care: a scoping review on acceptance, effectiveness and efficiency studies of informal and formal care technologies. BMC Health Serv Res. 2019;19(1):400.spa
dcterms.referencesWorld Health Organization: Classification of digital health interventions v1.0. (2018) https://apps.who.int/iris/bitstream/handle/10665/260480/WHO-RHR-18.06-eng.pdf?sequence=1. Accessed 20 Feb 2019.spa
dcterms.referencesDixon-Woods M, Agarwal S, Jones D, Young B, Sutton A. Synthesising qualitative and quantitative evidence: a review of possible methods. J Health Serv Res Policy. 2005;10(1):45–53.spa
dcterms.referencesOcampo CB, Mina NJ, Echavarria MI, Acuña M, Caballero A, Navarro A, Aguirre A, Criollo IS, Forero F, Azuero O, Alexander ND. VECTOS: an integrated system for monitoring risk factors associated with urban Arbovirus transmission. Glob Health Sci Pract. 2019;7(1):128–37.spa
dcterms.referencesAbel Mangueira FF, Smania-Marques R, Dutra Fernandes I, Alves Albino V, Olinda R, Acácia Santos-Silva T, Traxler J, Matheson D, Santos S. The prevention of arboviral diseases using mobile devices: a preliminary study of the attitudes and behaviour change produced by educational interventions. Tropical Med Int Health. 2019;24(12):1411–26.spa
dcterms.referencesRodriguez-Valero N, Oroz ML, Sanchez DC, Vladimirov A, Espriu M, Vera I, et al. Mobile based surveillance platform for detecting Zika virus among Spanish delegates attending the Rio de Janeiro Olympic games. PLoS One. 2018;13(8):e0201943.spa
dcterms.referencesHewavithana JS, Palangasinghe DR, Dahanayaka NJ. Feasibility of mapping of dengue fever patients admitted to medical wards of teaching hospital Karapitiya using Google maps®app in mobile phones or tablets. Ceylon Med J. 2018;63(2):90.spa
dcterms.referencesOlson D, Lamb M, Lopez MR, et al. Performance of a Mobile phone app-based participatory Syndromic surveillance system for acute febrile illness and acute gastroenteritis in rural Guatemala. J Med Internet Res. 2017;19(11):e368.spa
dcterms.referencesPalmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, Bengoa M, Eritja R, Bartumeus F. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat Commun. 2017;8(1):916.spa
dcterms.referencesLwin MO, Jayasundar K, Sheldenkar A, Wijayamuni R, Wimalaratne P, Ernst KC, Foo S. Lessons from the implementation of Mo-buzz, a mobile pandemic surveillance system for dengue. JMIR Public Health Surveill. 2017;3(4):e65.spa
dcterms.referencesSanavria A, et al. Intelligent monitoring of Aedes aegypti in a rural area of Rio de Janeiro State. Rev Inst Med Trop Sao Paulo. 2017;59:e51 1-e51:9.spa
dcterms.referencesPepin KM, Marques-Toledo C, Scherer L, Morais MM, Ellis B, Eiras AE, et al. Cost-effectiveness of novel system of mosquito surveillance and control, Brazil. Emerg Infect Dis. 2013;19:542–50.spa
dcterms.referencesEiras AE, Resende MC. Preliminary evaluation of the "Dengue-MI" technology for Aedes aegypti monitoring and control. Cad Saúde Pública. 2009;25(Suppl 1):S45–58.spa
dcterms.referencesLeal Neto O, Dimech GS, Libel M, et al. Saúde na Copa: the World's first application of participatory surveillance for a mass gathering at FIFA world cup 2014, Brazil. JMIR Public Health Surveill. 2017;3(2):e26.spa
dcterms.referencesMukundarajan H, Hol FJH, Castillo EA, Newby C, Prakash M. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. eLife. 2017;6:e27854.spa
dcterms.referencesWu TP, Tian JH, Xue RD, Fang YL, Zheng AH. Mosquito (Diptera: Culicidae) habitat surveillance by android Mobile devices in Guangzhou, China. Insects. 2016;7(4):E79.spa
dcterms.referencesReddy E, Kumar S, Rollings N, Chandra R. Mobile application for dengue fever monitoring and tracking via GPS: case study for Fiji. 2015. https://arxiv.org/abs/1503.00814. Accessed 10 Dec 2019.spa
dcterms.referencesPatil RN, Almale BD, Patil M, Gujrathi A, Dhakne-Palwe S, Patil AR, et al. Attitudes and perceptions of medical undergraduates towards Mobile learning (M-learning). J Clin Diagn Res. 2016;10(10):JC06–10.spa
dcterms.referencesThiha A, Ibrahim F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors. 2015;15:11431–41.spa
dcterms.referencesLozano-Fuentes S, Ghosh S, Bieman J, Sadhu D, Hernandez-Garcia E, Garcia-Rejon J, Wedyan F, Tep-Chel D, Eisen L. Using cell phones for mosquito vector surveillance and control, in: 24th International Conference on Software Engineering & Knowledge Engineering (SEKE’12), Knowledge Systems InstituteGraduate School, 2012, pp. 763–767.spa
dcterms.referencesLozano-Fuentes S, Wedyan F, Hernandez-Garcia E, Sadhu D, Ghosh S, Bieman JM, Tep-Chel D, García-Rejón JE, Eisen L. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J Med Entomol. 2013;50(4):879–89.spa
dcterms.referencesKumoji E, Khan SS. Use of short message service for monitoring Zika-related behaviors in four Latin American countries: lessons learned from the field. Mhealth. 2019;5:23.spa
dcterms.referencesRandriamiarana R, Raminosoa G, Vonjitsara N, Randrianasolo R, Rasamoelina H, Razafimandimby H, Rakotonjanabelo AL, Lepec R, Flachet L, Halm A. Evaluation of the reinforced integrated disease surveillance and response strategy using short message service data transmission in two southern regions of Madagascar, 2014–15. BMC Health Serv Res. 2018;18(1):265.spa
dcterms.referencesToda M, Njeru I, Zurovac D, et al. Effectiveness of a mobile short-message-service-based disease outbreak alert system in Kenya. Emerg Infect Dis. 2016;22:711–5.spa
dcterms.referencesToda M, Njeru I, Zurovac D, Kareko D, O-Tipo S, Mwau M, et al. Understanding mSOS: a qualitative study examining the implementation of a text-messaging outbreak alert system in rural Kenya. PLoS One. 2017;12(6):e0179408.spa
dcterms.referencesRandrianasolo L, Raoelina Y, Ratsitorahina M, Ravolomanana L, Andriamandimby S, Heraud J, Rakotomanana F, Ramanjato R, Randrianarivo-Solofoniaina AE, Richard V. Sentinel surveillance system for early outbreak detection in Madagascar. BMC Public Health. 2010;10:31.spa
dcterms.referencesBhattarai AH, Sanjaya GY, Khadka A, Kumar R, Ahmad RA. The addition of mobile SMS effectively improves dengue prevention practices in community: an implementation study in Nepal. BMC Health Serv Res. 2019;19(1):699.spa
dcterms.referencesDammert AC, Galdo JC, Galdo V. Preventing dengue through mobile phones: evidence from a field experiment in Peru. J Health Econ. 2014;35:147–61.spa
dcterms.referencesKaarj K, Akarapipad P, Yoon JY. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci Rep. 2018;8(1):1–11.spa
dcterms.referencesRong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, Wang S. (2018). Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. 2018;1055:140–7.spa
dcterms.referencesGanguli A, Ornob A, Yu H, Damhorst GL, Chen W, Sun F, Bhuiya A, Cunningham BT, Bashir R. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and dengue at point-of-care. Biomed Microdevices. 2017;19:73.spa
dcterms.referencesPriye A, Bird S, Light Y, et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. 2017;7:44778.spa
dcterms.referencesBhadra S, Riedel TE, Saldaña MA, Hegde S, Pederson N, Hughes GL, Ellington AD. Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone. PLoS Negl Trop Dis. 2018;12(8):e0006671.spa
dcterms.referencesChan K, Weaver SC, Wong PY, Lie S, Wang E, Guerbois M, Vayugundla SP, Wong S. Rapid, affordable and portable medium-throughput molecular device for Zika virus. Sci Rep. 2016;6:38223.spa
dcterms.referencesRajarethinam J, Ong J, Lim SH, Tay YH, Bounliphone W, Chong CS, Yap G, Ng LC. Using human movement data to identify potential areas of Zika transmission: case study of the largest Zika cluster in Singapore. Int J Environ Res Public Health. 2019;16:808.spa
dcterms.referencesMassaro E, Kondor D, Ratti C. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Sci Rep. 2019;9:1691.spa
dcterms.referencesMao L, Yin L, Song X, Mei S. Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data. Acta Trop. 2016;162:188–95.spa
dcterms.referencesWesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, Engø-Monsen K, Buckee CO. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci U S A. 2015;112:11887–92.spa
dcterms.referencesBarde PV, Mishra N, Singh N. Timely diagnosis, use of information technology and mosquito control prevents dengue outbreaks: experience from Central India. J Infect Public Health. 2018;11(5):739–41.spa
dcterms.referencesL’Azou M, Moureau A, Sarti E, et al. Symptomatic dengue in children in 10 Asian and Latin American countries. N Engl J Med. 2016;374:1155–66.spa
dcterms.referencesAbaza H, Marschollek M. mHealth Application areas and technology combinations*. A comparison of literature from high and low/middle income countries. Methods Inf Med. 2017;56(7):e105-e122.spa
dcterms.referencesFedele DA, Cushing CC, Fritz A, Amaro CM, Ortega A. Mobile health interventions for improving health outcomes in youth: a meta-analysis. JAMA Pediatr. 2017;171(5):461–9.spa
dcterms.referencesKuyo RO, Muiruri L, Njuguna S. Organizational factors influencing the adoption of the district health information system 2 in Uasin Gishu County, Kenya. Int J Med Res Health Sci. 2018;7(10):48–57.spa
dcterms.referencesBuckee CO, Wesolowski A, Eagle NN, Hansen E, Snow RW. Mobile phones and malaria: modeling human and parasite travel. Travel Med Infect Dis. 2013;11(1):15–22.spa
dcterms.referencesJones KH, Daniels H, Heys S, Ford DV. Challenges and potential opportunities of Mobile phone call detail Records in Health Research: review. JMIR Mhealth Uhealth. 2018 Jul 19;6(7):e161.spa
dcterms.referencesShibasaki R. Call Detail Record (CDR) ANALYSIS: REPUBLIC OF GUINEA International. Telecommunication Union (ITU) report. 2017. https://www.itu.int/en/ITU-D/Emergency-Telecommunications/Documents/2017/Reports/GN/EN/D012A0000D03301PDFE.pdf. Accessed 23 Aug 2020.spa
dcterms.referencesHall CS, Fottrell E, Wilkinson S, Byass P. Assessing the impact of mHealth interventions in low- and middle-income countries – what has been shown to work? Glob Health Action. 2014;7:1–12.spa
dcterms.referencesSallis A, Sherlock J, Bonus A, Saei A, Gold N, Vlaev I, Chadborn T. Pre-notification and reminder SMS text messages with behaviourally informed invitation letters to improve uptake of NHS health checks: a factorial randomised controlled trial. BMC Public Health. 2019;19(1):1162.spa
dcterms.referencesKirwan M, Duncan MJ, Vandelanotte C, Mummery WK. Design, development, and formative evaluation of a smartphone application for recording and monitoring physical activity levels: the 10,000 Steps “iStepLog”. Health Educ Behav. 2013;40(2):140–51.spa
dcterms.referencesSchnall R, Rojas M, Bakken S, Brown W, Carballo-Dieguez A, Carry M, Gelaude D, Mosley JP, Travers J. A user-centered model for designing consumer mobile health (mHealth) applications (apps). J Biomed Inform. 2016;60:243–51.spa
dcterms.referencesStephan LS, Dytz Almeida E, Guimaraes RB, Ley AG, Mathias RG, Assis MV, Leiria TL. Processes and recommendations for creating mHealth apps for low-income populations. JMIR Mhealth Uhealth. 2017;5(4):e41.spa
dcterms.referencesZafar F, Hassan RS, Mahmood Z. Effective use of ICT and emerging cellular Technologies for Health Care: E-Govt reshaping governance into good governance journal of economics, business and. Management. 2014;2(3):236–41.spa
dcterms.referencesSt Clair-Sullivan N, Mwamba C, Whetham J, Bolton Moore C, Darking M, Vera J. Barriers to HIV care and adherence for young people living with HIV in Zambia and mHealth. Mhealth. 2019;5:45.spa
dcterms.referencesLaar AS, Bekyieriya E, Isang S, Baguune B. Assessment of mobile health technology for maternal and child health services in rural upper West region of Ghana. Public Health. 2019;168:1–8.spa
dcterms.referencesBol N, Helberger N, Van Weert JCM. Differences in mobile health app use: a source of new digital inequalities? Inf Soc. 2018;34(3):183–93.spa
dcterms.referencesTran MC, Labrique AB, Mehra S, Ali H, Shaikh S, Mitra M, Christian P, West K Jr. Analyzing the mobile "digital divide": changing determinants of household phone ownership over time in rural Bangladesh. JMIR Mhealth Uhealth. 2015;3(1):e24.spa
dcterms.referencesRoyston G, Hagar C, Long LA, McMahon D, Pakenham-Walsh N, Wadhwani N. Mobile health-care information for all: a global challenge. mHIFA working group (Mobile healthcare information for all). Lancet Glob Health. 2015;3(7):e356–7.spa
dcterms.referencesAitken M, Lyle J. Patient adoption of mHealth: Use, evidence and remaining barriers to mainstream acceptance. Parsippany, NJ: IMS Institute for Health care Informatics. 2015 https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/patient-adoption-of-mhealth.pdf. Accessed 25 Sep 2020.spa
dcterms.referencesAdokiya MN, Awoonor-Williams JK, Beiersmann C, Müller O. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions. BMC Health Serv Res. 2015;15:288.spa
dcterms.referencesMuller N, Emmrich PMF, Rajemison EN, De Neve JW, Bärnighausen T, Knauss S, Emmrich JV. A Mobile health wallet for pregnancy-related health Care in Madagascar: mixed-methods study on opportunities and challenges. JMIR Mhealth Uhealth. 2019;7(3):e11420.spa
dcterms.referencesPrinja S, Gupta A, Bahuguna P, Nimesh R. Cost analysis of implementing mHealth intervention for maternal, newborn & child health care through community health workers: assessment of ReMIND program in Uttar Pradesh, India. BMC Pregnancy Childbirth. 2018;18(1):390.spa
dcterms.referencesPham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5(4):371–85.spa
dcterms.referencesMunn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018;18(1):143.spa
dc.identifier.doihttps://doi.org/10.1186/s12889-020-10126-4
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.21 No.1.(2018)spa
dc.relation.citationendpage6spa
dc.relation.citationissue1(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume21spa
dc.relation.citesCarrillo, M. A., Kroeger, A., Sanchez, R. C., Monsalve, S. D., & Runge-Ranzinger, S. (2021). The use of mobile phones for the prevention and control of arboviral diseases: a scoping review. BMC public health, 21(1), 1-16.
dc.relation.ispartofjournalBMC Public Healthspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMobile phoneeng
dc.subject.proposalMobile technologyeng
dc.subject.proposalmHealtheng
dc.subject.proposalDengueeng
dc.subject.proposalZikaeng
dc.subject.proposalChikungunyaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem