Mostrar el registro sencillo del ítem

dc.contributor.authorParra, J W
dc.contributor.authorQuadri, M B
dc.contributor.authorRodríguez, D C
dc.date.accessioned2024-04-23T15:17:01Z
dc.date.available2024-04-23T15:17:01Z
dc.date.issued2021-09-03
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/7014
dc.description.abstractIn the textile industry, drying is one of the most important processes. This process requires large investments and high energy consumption, which generates high costs for companies in this sector. In this work, a modeling of the behavior of the air was carried out in a textile Stenter, under real operating conditions through the development of fluid-dynamic simulations. For the computational modeling of the problem, a 3D geometry was constructed based on measurements taken from an injector of a textile Stenter. The standard k-ε turbulence model was used in the turbulent flow solution. The equations of the model were solved numerically using the finite element method. The standard k-epsilon turbulence model proved to be a model capable of reproducing the behavior of the air in the injectors of the textile Stenter.eng
dc.format.extent8 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series 2118 (2021) 012006 IOP Publishing doi:10.1088/1742-6596/2118/1/012006
dc.rightsEstá bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/2118/1/012006spa
dc.titleFluid-dynamic study of the behavior of the air inside a textile Stentereng
dc.typeArtículo de revistaspa
dcterms.referencesOktay Z, Hepbasli A 2002 Performance evaluation of a heat pump assisted mechanical opener dryer Energy Conversion and Management 44 1193spa
dcterms.referencesFerraz A D 2010 Rio Oil & Gas Expo and Conference 2010 (Rio de Janeiro: Instituto Brasileiro de Petróleo, Gás e Biocombustíveis)spa
dcterms.referencesShi Y, Ray M B, Mujumdar A S 2002 Computational study of impingement heat transfer under a turbulent slot jet Ind. Eng. Chem. Res. 41 4643spa
dcterms.referencesColucci D W, Viskanta R 1996 Effect of nozzle geometry on local convective heat transfer to a confind impinging air jet Experimental Thermal and Fluid Science 13 71spa
dcterms.referencesLee J, Lee S J 2000 The efect of nozzle configuration on stagnation región heat transfer enhancement of axisymmetric jet impingement Int. J. Heat Mass Trans. 43 3497spa
dcterms.referencesWang S J, Mujumdar A S 2005 A comparative study of five low Reynolds number k– ε models for impingement heat transfer Applied Thermal Engineering 25 31spa
dcterms.referencesGulati P, Katti V, Prabhu S V 2008 Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet Int. J. of Ther. Scie. 48 602spa
dcterms.referencesChapra S C, Canale R P 2008 Métodos Numéricos para Ingenieros, 5ª edición (Mexico: McGraw Hill)spa
dcterms.referencesHeuert J, Khatchatourian O 2007 Congresso Nacional de Matemática Aplicada e Computacional (Florianópolis: Sociedade Brasileira de Matemática Aplicada e Computacional)spa
dcterms.referencesJones W P, Launder B E 1972 The prediction of laminarization with a two-equation model of turbulence International Journal of Heat and Mass Transfer 15 301spa
dcterms.referencesSantos R M, Parra J W, Quadri M B, Rocha I C 2015 Study of drying and consumption of natural gas in a textile stenter of direct heating Dry Technol. 33 37spa
dcterms.referencesGalarça M M 2004 Análise Numérica para Modelos de Turbulência k-ω E SST/ k-ω para O Escoamento de Ar No Interior de Uma Lareira de Pequeno Porte. Modelagem Da Turbulência (Porto Alegre: Universidade Federal do Rio Grande do Sul)spa
dcterms.referencesArantes E J, Porto R M, Gulliver J S, Lima A, Schulz H E 2010 Lower nappe aeration in smooth channels: experimental data and numerical simulation Anais da Academia Brasileira de Ciências 82 521spa
dc.identifier.doi10.1088/1742-6596/2118/1/012006
dc.relation.citationeditionVol.2118 No. (2021)spa
dc.relation.citationendpage8spa
dc.relation.citationissue(2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume2118spa
dc.relation.citesJ W Parra et al 2021 J. Phys.: Conf. Ser. 2118 012006
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalunder the terms of theCreative Commons Attribution 3.0 licenceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Está bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).
Excepto si se señala otra cosa, la licencia del ítem se describe como Está bajo una licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).