Mostrar el registro sencillo del ítem


Advanced Oxidation Processes Based on Ozone as a Treatment Alternative forLandfill Leaches

dc.contributor.authorBecerra Moreno, Dorance
dc.contributor.authorRubio Gomez, Yrany
dc.contributor.authorRamírez Ríos, Luisa Fernanda
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorMachuca-Martínez, Fiderman
dc.date.accessioned2024-04-19T15:07:06Z
dc.date.available2024-04-19T15:07:06Z
dc.date.issued2021-09-07
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6976
dc.description.abstractLos procesos basados en ozono hacen parte de los Procesos Avanzados de Oxidación que se han aplicado sobre los lixiviados de rellenos sanitarios. Las características altamente tóxicas de los lixiviados de rellenos sanitarios, pueden reducirse por medio de los procesos basados en ozono, los cuales han demostrado alcanzar altas remociones de contaminantes, en especial, de compuestos orgánicos recalcitrantes. En esta revisión se compila información reciente (2015 a 2021) referente a los procesos basados en ozono, donde se ha estudiado la eficacia como tratamiento, se analiza las condiciones óptimas de acuerdo al tipo de lixiviado y al método de tratamiento a emplear. Se identifica la tendencia de implementación como pretratamiento y postratamiento acoplado a procesos convencionales.spa
dc.description.abstractOzone-based processes are part of the Advanced Oxidation Processes that have been applied on leachates from landfills. The highlytoxic characteristics of landfill leachates can be reduced by ozone-based processes, which have been shown to achieve high removalsof pollutants, especially recalcitrant organic compounds. In this review, recent information is compiled (2015 to 2021) regardingozone-based processes, where the efficacy as a treatment has been studied, the optimal conditions are analyzed according to the typeof leachate and the treatment method to be used. The implementation trend is identified as pre-treatment and post-treatment coupledwith conventional processes.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherCiencia En Desarrollospa
dc.relation.ispartofCienc. En Desarro., vol. 12, n.º 2, sep. 2021.https://doi.org/10.19053/01217488.v12.n2.2021.12503
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12503spa
dc.titleProcesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitariosspa
dc.titleAdvanced Oxidation Processes Based on Ozone as a Treatment Alternative forLandfill Leacheseng
dc.typeArtículo de revistaspa
dcterms.referencesM. Lovato, J. R. Buffelli, M. Abrile, and C. Martín, “Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment,” Environ. Sci. Pollut. Res., vol. 26, no. 5, pp. 4474–4487, 2019. DOI: https://doi.org/10.1007/s11356-018-1710-2spa
dcterms.referencesW. Cheng, X. Quan, X. Huang, C. Cheng, L. Yang, and Z. Cheng, “Enhancement of micro-filtration performance for biologically-treated leachate from municipal solid waste by ozonation in a micro bubble reactor,” Sep. Purif. Technol., vol. 207, pp. 535–542, 2018. DOI: https://doi.org/10.1016/j.seppur.2018.07.005spa
dcterms.referencesS. Kow, M. R. Fahmi, C. Z. A. Abidin, and O. Soon‐An, “Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment,” Water Environ. Res., vol. 88, no. 11, pp. 2047–2058, 2016. DOI: https://doi.org/10.2175/106143016X14733681695285spa
dcterms.referencesH. Wang, Y. nan Wang, X. Li, Y. Sun, H. Wu, and D. Chen, “Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment,” Waste Manag., vol. 56, pp. 271–279, 2016. DOI: https://doi.org/10.1016/j.wasman.2016.07.040spa
dcterms.referencesA. Mojiri et al., “Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process,” Process Saf. Environ. Prot., vol. 111, pp. 253–262, 2017. DOI: https://doi.org/10.1016/j.psep.2017.07.013spa
dcterms.referencesY. He, H. Zhang, J. J. Li, Y. Zhang, B. Lai, and Z. Pan, “Treatment of Landfill Leachate Reverse Osmosis Concentrate from by Catalytic Ozonation with γ-Al2O3,” Environ. Eng. Sci., vol. 35, no. 5, pp. 501–511, 2018. DOI: https://doi.org/10.1089/ees.2017.0188spa
dcterms.referencesQ. Xu, G. Siracusa, S. Di Gregorio, and Q. Yuan, “COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs),” Process Saf. Environ. Prot., vol. 120, pp. 278–285, 2018. DOI: https://doi.org/10.1016/j.psep.2018.09.014spa
dcterms.referencesZ. Youcai, “Leachate Generation and Characteristics,” in Pollution Control Technology for Leachate from Municipal Solid Waste, E. Inc., Ed. 2018, pp. 1–30. DOI: https://doi.org/10.1016/B978-0-12-815813-5.00001-2spa
dcterms.referencesS. S. Abu Amr, H. A. Aziz, M. S. Hossain, and M. J. K. Bashir, “Simultaneous removal of COD and color from municipal landfill leachate using Ozone/Zinc sulphate oxidation process,” Glob. Nest J., vol. 19, no. 3, pp. 498–504, 2017. DOI: https://doi.org/10.30955/gnj.002299spa
dcterms.referencesW. Chen, A. Zhang, G. Jiang, and Q. Li, “Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation,” Waste Manag., vol. 85, pp. 283–294, 2019. DOI: https://doi.org/10.1016/j.wasman.2018.12.038spa
dcterms.referencesM. J. K. Bashir, H. A. Aziz, S. S. A. Amr, S. Sethupathi, C. A. Ng, and J. W. Lim, “The competency of various applied strategies in treating tropical municipal landfill leachate,” Desalin. Water Treat., vol. 54, no. 9, pp. 2382–2395, 2015. DOI: https://doi.org/10.1080/19443994.2014.901189spa
dcterms.referencesH. Luo, Y. Zeng, Y. Cheng, D. He, and X. Pan, “Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment,” Sci. Total Environ., vol. 703, p. 135468, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.135468spa
dcterms.referencesW. Chen and Q. Li, “Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study,” Chemosphere, vol. 242, p. 125256, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2019.125256spa
dcterms.referencesZ. Huang, Z. Gu, Y. Wang, and A. Zhang, “Improved oxidation of refractory organics in concentrated leachate by a Fe2+-enhanced O3/H2O2 process,” Environ. Sci. Pollut. Res., vol. 26, no. 35, pp. 35797–35806, 2019. DOI: https://doi.org/10.1007/s11356-019-06592-yspa
dcterms.referencesH. Qin and H. Chen, “Pretreatment of concentrated leachate by the combination of coagulation and catalytic ozonation with Ce/AC catalyst,” Water Sci. Technol., vol. 73, no. 3, pp. 511–519, 2016. DOI: https://doi.org/10.2166/wst.2015.508spa
dcterms.referencesM. Han, X. Duan, G. Cao, S. Zhu, and S. H. Ho, “Graphitic nitride-catalyzed advanced oxidation processesspa
dcterms.references(AOPs) for landfill leachate treatment: A mini review,” Process Saf. Environ. Prot., vol. 139, pp. 230–240, 2020. DOI: https://doi.org/10.1016/j.psep.2020.04.046spa
dcterms.referencesM. Chys, V. A. Oloibiri, W. T. M. Audenaert, K. Demeestere, and S. W. H. Van Hulle, “Ozonation of biologically treated landfill leachate: Efficiency and insights in organic conversions,” Chem. Eng. J., vol. 277, pp. 104–111, 2015. DOI: https://doi.org/10.1016/j.cej.2015.04.099spa
dcterms.referencesN. Amaral-Silva, R. C. Martins, S. Castro-Silva, and R. M. Quinta-Ferreira, “Ozonation and perozonation on the biodegradability improvement of a landfill leachate,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 527–533, 2016. DOI: https://doi.org/10.1016/j.jece.2015.12.002spa
dcterms.referencesJ. L. Gao et al., “Integration of autotrophic nitrogen removal, ozonation and activated carbon filtration for treatment of landfill leachate,” Chem. Eng. J., vol. 275, pp. 281–287, 2015. DOI: https://doi.org/10.1016/j.cej.2015.04.012spa
dcterms.referencesJ. Gao et al., “The present status of landfill leachate treatment and its development trend from a technological point of view,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 93–122, 2015. DOI: https://doi.org/10.1007/s11157-014-9349-zspa
dcterms.referencesH.-J. Fan, Y.-Y. Chen, M.-Y. Chen, and D.-T. Chang, Landfill leachate treatment with Mn and Ce oxides impregnated GAC-ozone treatment process, vol. 482. Elsevier B.V., 2015. DOI: https://doi.org/10.1016/j.colsurfa.2015.06.042spa
dcterms.referencesR. Poblete, I. Oller, M. I. Maldonado, and E. Cortes, “Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes,” J. Environ. Manage., vol. 232, no. August 2018, pp. 45–51, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.11.030spa
dcterms.referencesK. Ikehata and Y. Li, “Ozone-Based Processes,” in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Elsevier Inc., Ed. 2018, pp. 115–134. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00005-Xspa
dcterms.referencesH. Wang et al., “Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV),” J. Environ. Manage., vol. 191, pp. 244–251, 2017. DOI: https://doi.org/10.1016/j.jenvman.2017.01.021spa
dcterms.referencesA. Soubh and N. Mokhtarani, “The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes,” RSC Adv., vol. 6, no. 80, pp. 76113–76122, 2016. DOI: https://doi.org/10.1039/C6RA09539Aspa
dcterms.referencesS. S. Abu-Amr, S. N. F. Zakaria, and H. A. Aziz, “Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment,” J. Mater. Cycles Waste Manag., vol. 19, no. 4, pp. 1384–1390, 2016. DOI: https://doi.org/10.1007/s10163-016-0524-xspa
dcterms.referencesA. P. J. Scandelai, L. Cardozo Filho, D. C. C. Martins, T. K. F. de S. Freitas, J. C. Garcia, and C. R. G. Tavares, “Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation,” Waste Manag., vol. 77, no. November, pp. 466–476, 2018. DOI: https://doi.org/10.1016/j.wasman.2018.04.031spa
dcterms.referencesE. Kattel, A. Kivi, K. Klein, T. Tenno, N. Dulova, and M. Trapido, “Hazardous waste landfill leachate treatment by combined chemical and biological techniques,” Desalin. Water Treat., vol. 57, no. 28, pp. 13236–13245, 2016. DOI: https://doi.org/10.1080/19443994.2015.1057539spa
dcterms.referencesA. I. Gomes, T. F. Soares, T. F. C. V. Silva, R. A. R. Boaventura, and V. J. P. Vilar, “Ozone-driven processes for mature urban landfill leachate treatment: Organic matter degradation, biodegradability enhancement and treatment costs for different reactors configuration,” Sci. Total Environ., vol. 724, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.138083spa
dcterms.referencesJ. Umamaheswari, T. Bharathkumar, S. Shanthakumar, and K. M. Gothandam, “A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment,” Process Saf. Environ. Prot., vol. 143, pp. 212–221, 2020. DOI: https://doi.org/10.1016/j.psep.2020.06.040spa
dcterms.referencesF. Jiang, B. Qiu, and D. Sun, “Degradation of refractory organics from biologically treated incineration leachate by VUV/O3,” Chem. Eng. J., vol. 370, no. December 2018, pp. 346–353, 2019. DOI: https://doi.org/10.1016/j.cej.2019.03.206spa
dcterms.referencesH. R. AlGburi, H. A. Aziz, H. M. Zwain, and A. F. M. Noor, “Treatment of Landfill Leachate by Heterogeneous Catalytic Ozonation with Granular Faujasite Zeolite,” Environ. Eng. Sci., vol. 00, no. 00, 2020.spa
dcterms.referencesM. Bourgin et al., “Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water,” Water Res., vol. 122, pp. 234–245, 2017. DOI: https://doi.org/10.1016/j.watres.2017.05.018spa
dcterms.referencesT. H. Van and T. V. Trinh, “Application of Regression Analysis for Ozone and Catalytic Ozonation of Organic Compounds from Landfill Leachate with Ceramic Raschig Rings and Natural Manganese Ore,” Ozone Sci. Eng., vol. 38, no. 2, pp. 133–142, 2016. DOI: https://doi.org/10.1080/01919512.2015.1112725spa
dcterms.referencesP. Asaithambi, B. Sajjadi, A. R. Abdul Aziz, and W. M. A. B. W. Daud, “Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD and determination of electrical energy from landfill leachate,” Sep. Purif. Technol., vol. 172, pp. 442–449, 2017. DOI: https://doi.org/10.1016/j.seppur.2016.08.041spa
dcterms.referencesF. Wang, Y. Huang, P. Wen, and Q. Li, “Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe0-participated O3/H2O2 process,” Chemosphere, vol. 263, p. 128198, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.128198spa
dcterms.referencesP. Gautam, S. Kumar, and S. Lokhandwala, “Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review,” J. Clean. Prod., vol. 237, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.117639spa
dcterms.referencesC. Wu, W. Chen, Z. Gu, and Q. Li, “A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment,” Sci. Total Environ., p. 143131, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.143131spa
dcterms.referencesM. Ghahrchi and A. Rezaee, “Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate,” J. Environ. Manage., vol. 254, no. October 2019, p. 109811, 2020. DOI: https://doi.org/10.1016/j.jenvman.2019.109811spa
dcterms.referencesA. P. J. Scandelai, E. Sloboda Rigobello, B. L. C. de Oliveira, and C. R. G. Tavares, “Identification of organic compounds in landfill leachate treated by advanced oxidation processes,” Environ. Technol. (United Kingdom), vol. 40, no. 6, pp. 730–741, 2019. DOI: https://doi.org/10.1080/09593330.2017.1405079spa
dcterms.referencesY. Wang et al., “Effective removal of contaminants from biotreated leachate by a combined Fe(III)/O3 process: Efficiency and mechanisms,” J. Clean. Prod., vol. 276, no. Iii, p. 123379, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.123379spa
dcterms.referencesZ. Liu, L. Pan, F. Hu, and Y. Hu, “Advanced landfill leachate biochemical effluent treatment using Fe-Mn/AC activates O3/Na2S2O8 process: process optimization, wastewater quality analysis, and activator characterization,” Environ. Sci. Pollut. Res., vol. 27, no. 13, pp. 15337–15349, 2020. DOI: https://doi.org/10.1007/s11356-020-08046-2spa
dcterms.referencesH. R. AlGburi, H. A. Aziz, H. M. Zwain, and A. F. M. Noor, “Treatment of Landfill Leachate by Heterogeneous Catalytic Ozonation with Granular Faujasite Zeolite,” Environ. Eng. Sci., no. December, 2020. DOI: https://doi.org/10.1089/ees.2020.0233spa
dcterms.referencesA. Ikhlaq et al., “ Treatment of leachate through constructed wetlands using Typha angustifolia in combination with catalytic ozonation on Fe-zeolite A ,” Int. J. Phytoremediation, vol. 0, no. 0, pp. 1–9, 2020.spa
dcterms.referencesY. Xiang, Y. Chen, S. Luo, J. Zou, and A. Zhang, “Degradation of recalcitrant organic matter in SAARB leachate by a combined process of coagulation and catalytic ozonation,” Environ. Sci. Pollut. Res., vol. 27, no. 32, pp. 40219–40228, 2020. DOI: https://doi.org/10.1007/s11356-020-08292-4spa
dcterms.referencesD. Ranjbar-Vakilabadi, A. H. Hassani, G. Omrani, and B. Ramavandi, “Catalytic potential of Cu/Mg/Al-chitosan for ozonation of real landfill leachate,” Process Saf. Environ. Prot., vol. 107, pp. 227–237, 2017. DOI: https://doi.org/10.1016/j.psep.2017.02.013spa
dcterms.referencesM. A. Kamaruddin, M. S. Yusoff, L. M. Rui, A. M. Isa, M. H. Zawawi, and R. Alrozi, “An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives,” Environ. Sci. Pollut. Res., vol. 24, no. 35, pp. 26988–27020, 2017. DOI: https://doi.org/10.1007/s11356-017-0303-9spa
dcterms.referencesR. A. Agarwal, A. K. Agarwal, T. Gupta, and N. Sharma, Introduction to Pollutants from Energy Sources: Characterization and Control. 2019. DOI: https://doi.org/10.1007/978-981-13-3281-4spa
dcterms.referencesY. Ogata et al., “Design considerations of constructed wetlands to reduce landfill leachate contamination in tropical regions,” J. Mater. Cycles Waste Manag., vol. 20, no. 4, pp. 1961–1968, 2018. DOI: https://doi.org/10.1007/s10163-018-0755-0spa
dcterms.referencesC. Ma et al., “Catalytic micro-ozonation by Fe3O4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate,” Waste Manag., vol. 83, pp. 23–32, 2019. DOI: https://doi.org/10.1016/j.wasman.2018.10.045spa
dcterms.referencesX. Tang, S. Zhu, X. Quan, X. Huang, F. Qiu, and C. Feng, “Degradation Treatment of Concentrated Landfill Leachate by Catalytic Ozonation in a Microbubble Reactor,” Ozone Sci. Eng., vol. 00, no. 00, pp. 1–14, 2020.spa
dcterms.referencesK. S. Rajoo, D. S. Karam, A. Ismail, and A. Arifin, “Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC),” Environ. Nanotechnology, Monit. Manag., vol. 14, no. September, p. 100372, 2020. DOI: https://doi.org/10.1016/j.enmm.2020.100372spa
dcterms.referencesW. L. M. Braga et al., “Optimization of the treatment of sanitary landfill by the ozonization catalysed by modified nanovermiculite in a rotating packed bed,” J. Clean. Prod., vol. 249, p. 119395, 2020. DOI: https://doi.org/10.1016/j.jclepro.2019.119395spa
dcterms.referencesS. M. Iskander et al., “A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment,” Water Res., vol. 145, pp. 297–311, 2018. DOI: https://doi.org/10.1016/j.watres.2018.08.035spa
dc.identifier.doi10.19053/01217488.v12.n2.2021.12503
dc.publisher.placeTunja, Colombiaspa
dc.relation.citationeditionVol.12 No.2 (2021)spa
dc.relation.citationendpage108spa
dc.relation.citationissue2 (2021)spa
dc.relation.citationstartpage95spa
dc.relation.citationvolume12spa
dc.relation.citesD. . Becerra-Moreno, Y. . Rubio-Gomez, L. F. Ramírez-Ríos, A. F. . . Barajas-Solano, y F. Machuca Martínez, «Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios», Cienc. En Desarro., vol. 12, n.º 2, sep. 2021.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalLixiviado de rellenos sanitariosspa
dc.subject.proposalOzonospa
dc.subject.proposalPAOsspa
dc.subject.proposalTratamientospa
dc.subject.proposalandfill leachateeng
dc.subject.proposalozoneeng
dc.subject.proposalAOPseng
dc.subject.proposaltreatmenteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Excepto si se señala otra cosa, la licencia del ítem se describe como Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.