Mostrar el registro sencillo del ítem
Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios
Advanced Oxidation Processes Based on Ozone as a Treatment Alternative forLandfill Leaches
dc.contributor.author | Becerra Moreno, Dorance | |
dc.contributor.author | Rubio Gomez, Yrany | |
dc.contributor.author | Ramírez Ríos, Luisa Fernanda | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Machuca-Martínez, Fiderman | |
dc.date.accessioned | 2024-04-19T15:07:06Z | |
dc.date.available | 2024-04-19T15:07:06Z | |
dc.date.issued | 2021-09-07 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6976 | |
dc.description.abstract | Los procesos basados en ozono hacen parte de los Procesos Avanzados de Oxidación que se han aplicado sobre los lixiviados de rellenos sanitarios. Las características altamente tóxicas de los lixiviados de rellenos sanitarios, pueden reducirse por medio de los procesos basados en ozono, los cuales han demostrado alcanzar altas remociones de contaminantes, en especial, de compuestos orgánicos recalcitrantes. En esta revisión se compila información reciente (2015 a 2021) referente a los procesos basados en ozono, donde se ha estudiado la eficacia como tratamiento, se analiza las condiciones óptimas de acuerdo al tipo de lixiviado y al método de tratamiento a emplear. Se identifica la tendencia de implementación como pretratamiento y postratamiento acoplado a procesos convencionales. | spa |
dc.description.abstract | Ozone-based processes are part of the Advanced Oxidation Processes that have been applied on leachates from landfills. The highlytoxic characteristics of landfill leachates can be reduced by ozone-based processes, which have been shown to achieve high removalsof pollutants, especially recalcitrant organic compounds. In this review, recent information is compiled (2015 to 2021) regardingozone-based processes, where the efficacy as a treatment has been studied, the optimal conditions are analyzed according to the typeof leachate and the treatment method to be used. The implementation trend is identified as pre-treatment and post-treatment coupledwith conventional processes. | eng |
dc.format.extent | 14 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Ciencia En Desarrollo | spa |
dc.relation.ispartof | Cienc. En Desarro., vol. 12, n.º 2, sep. 2021.https://doi.org/10.19053/01217488.v12.n2.2021.12503 | |
dc.rights | Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12503 | spa |
dc.title | Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios | spa |
dc.title | Advanced Oxidation Processes Based on Ozone as a Treatment Alternative forLandfill Leaches | eng |
dc.type | Artículo de revista | spa |
dcterms.references | M. Lovato, J. R. Buffelli, M. Abrile, and C. Martín, “Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment,” Environ. Sci. Pollut. Res., vol. 26, no. 5, pp. 4474–4487, 2019. DOI: https://doi.org/10.1007/s11356-018-1710-2 | spa |
dcterms.references | W. Cheng, X. Quan, X. Huang, C. Cheng, L. Yang, and Z. Cheng, “Enhancement of micro-filtration performance for biologically-treated leachate from municipal solid waste by ozonation in a micro bubble reactor,” Sep. Purif. Technol., vol. 207, pp. 535–542, 2018. DOI: https://doi.org/10.1016/j.seppur.2018.07.005 | spa |
dcterms.references | S. Kow, M. R. Fahmi, C. Z. A. Abidin, and O. Soon‐An, “Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment,” Water Environ. Res., vol. 88, no. 11, pp. 2047–2058, 2016. DOI: https://doi.org/10.2175/106143016X14733681695285 | spa |
dcterms.references | H. Wang, Y. nan Wang, X. Li, Y. Sun, H. Wu, and D. Chen, “Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment,” Waste Manag., vol. 56, pp. 271–279, 2016. DOI: https://doi.org/10.1016/j.wasman.2016.07.040 | spa |
dcterms.references | A. Mojiri et al., “Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process,” Process Saf. Environ. Prot., vol. 111, pp. 253–262, 2017. DOI: https://doi.org/10.1016/j.psep.2017.07.013 | spa |
dcterms.references | Y. He, H. Zhang, J. J. Li, Y. Zhang, B. Lai, and Z. Pan, “Treatment of Landfill Leachate Reverse Osmosis Concentrate from by Catalytic Ozonation with γ-Al2O3,” Environ. Eng. Sci., vol. 35, no. 5, pp. 501–511, 2018. DOI: https://doi.org/10.1089/ees.2017.0188 | spa |
dcterms.references | Q. Xu, G. Siracusa, S. Di Gregorio, and Q. Yuan, “COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs),” Process Saf. Environ. Prot., vol. 120, pp. 278–285, 2018. DOI: https://doi.org/10.1016/j.psep.2018.09.014 | spa |
dcterms.references | Z. Youcai, “Leachate Generation and Characteristics,” in Pollution Control Technology for Leachate from Municipal Solid Waste, E. Inc., Ed. 2018, pp. 1–30. DOI: https://doi.org/10.1016/B978-0-12-815813-5.00001-2 | spa |
dcterms.references | S. S. Abu Amr, H. A. Aziz, M. S. Hossain, and M. J. K. Bashir, “Simultaneous removal of COD and color from municipal landfill leachate using Ozone/Zinc sulphate oxidation process,” Glob. Nest J., vol. 19, no. 3, pp. 498–504, 2017. DOI: https://doi.org/10.30955/gnj.002299 | spa |
dcterms.references | W. Chen, A. Zhang, G. Jiang, and Q. Li, “Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation,” Waste Manag., vol. 85, pp. 283–294, 2019. DOI: https://doi.org/10.1016/j.wasman.2018.12.038 | spa |
dcterms.references | M. J. K. Bashir, H. A. Aziz, S. S. A. Amr, S. Sethupathi, C. A. Ng, and J. W. Lim, “The competency of various applied strategies in treating tropical municipal landfill leachate,” Desalin. Water Treat., vol. 54, no. 9, pp. 2382–2395, 2015. DOI: https://doi.org/10.1080/19443994.2014.901189 | spa |
dcterms.references | H. Luo, Y. Zeng, Y. Cheng, D. He, and X. Pan, “Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment,” Sci. Total Environ., vol. 703, p. 135468, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.135468 | spa |
dcterms.references | W. Chen and Q. Li, “Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study,” Chemosphere, vol. 242, p. 125256, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2019.125256 | spa |
dcterms.references | Z. Huang, Z. Gu, Y. Wang, and A. Zhang, “Improved oxidation of refractory organics in concentrated leachate by a Fe2+-enhanced O3/H2O2 process,” Environ. Sci. Pollut. Res., vol. 26, no. 35, pp. 35797–35806, 2019. DOI: https://doi.org/10.1007/s11356-019-06592-y | spa |
dcterms.references | H. Qin and H. Chen, “Pretreatment of concentrated leachate by the combination of coagulation and catalytic ozonation with Ce/AC catalyst,” Water Sci. Technol., vol. 73, no. 3, pp. 511–519, 2016. DOI: https://doi.org/10.2166/wst.2015.508 | spa |
dcterms.references | M. Han, X. Duan, G. Cao, S. Zhu, and S. H. Ho, “Graphitic nitride-catalyzed advanced oxidation processes | spa |
dcterms.references | (AOPs) for landfill leachate treatment: A mini review,” Process Saf. Environ. Prot., vol. 139, pp. 230–240, 2020. DOI: https://doi.org/10.1016/j.psep.2020.04.046 | spa |
dcterms.references | M. Chys, V. A. Oloibiri, W. T. M. Audenaert, K. Demeestere, and S. W. H. Van Hulle, “Ozonation of biologically treated landfill leachate: Efficiency and insights in organic conversions,” Chem. Eng. J., vol. 277, pp. 104–111, 2015. DOI: https://doi.org/10.1016/j.cej.2015.04.099 | spa |
dcterms.references | N. Amaral-Silva, R. C. Martins, S. Castro-Silva, and R. M. Quinta-Ferreira, “Ozonation and perozonation on the biodegradability improvement of a landfill leachate,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 527–533, 2016. DOI: https://doi.org/10.1016/j.jece.2015.12.002 | spa |
dcterms.references | J. L. Gao et al., “Integration of autotrophic nitrogen removal, ozonation and activated carbon filtration for treatment of landfill leachate,” Chem. Eng. J., vol. 275, pp. 281–287, 2015. DOI: https://doi.org/10.1016/j.cej.2015.04.012 | spa |
dcterms.references | J. Gao et al., “The present status of landfill leachate treatment and its development trend from a technological point of view,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 93–122, 2015. DOI: https://doi.org/10.1007/s11157-014-9349-z | spa |
dcterms.references | H.-J. Fan, Y.-Y. Chen, M.-Y. Chen, and D.-T. Chang, Landfill leachate treatment with Mn and Ce oxides impregnated GAC-ozone treatment process, vol. 482. Elsevier B.V., 2015. DOI: https://doi.org/10.1016/j.colsurfa.2015.06.042 | spa |
dcterms.references | R. Poblete, I. Oller, M. I. Maldonado, and E. Cortes, “Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes,” J. Environ. Manage., vol. 232, no. August 2018, pp. 45–51, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.11.030 | spa |
dcterms.references | K. Ikehata and Y. Li, “Ozone-Based Processes,” in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Elsevier Inc., Ed. 2018, pp. 115–134. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00005-X | spa |
dcterms.references | H. Wang et al., “Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV),” J. Environ. Manage., vol. 191, pp. 244–251, 2017. DOI: https://doi.org/10.1016/j.jenvman.2017.01.021 | spa |
dcterms.references | A. Soubh and N. Mokhtarani, “The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes,” RSC Adv., vol. 6, no. 80, pp. 76113–76122, 2016. DOI: https://doi.org/10.1039/C6RA09539A | spa |
dcterms.references | S. S. Abu-Amr, S. N. F. Zakaria, and H. A. Aziz, “Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment,” J. Mater. Cycles Waste Manag., vol. 19, no. 4, pp. 1384–1390, 2016. DOI: https://doi.org/10.1007/s10163-016-0524-x | spa |
dcterms.references | A. P. J. Scandelai, L. Cardozo Filho, D. C. C. Martins, T. K. F. de S. Freitas, J. C. Garcia, and C. R. G. Tavares, “Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation,” Waste Manag., vol. 77, no. November, pp. 466–476, 2018. DOI: https://doi.org/10.1016/j.wasman.2018.04.031 | spa |
dcterms.references | E. Kattel, A. Kivi, K. Klein, T. Tenno, N. Dulova, and M. Trapido, “Hazardous waste landfill leachate treatment by combined chemical and biological techniques,” Desalin. Water Treat., vol. 57, no. 28, pp. 13236–13245, 2016. DOI: https://doi.org/10.1080/19443994.2015.1057539 | spa |
dcterms.references | A. I. Gomes, T. F. Soares, T. F. C. V. Silva, R. A. R. Boaventura, and V. J. P. Vilar, “Ozone-driven processes for mature urban landfill leachate treatment: Organic matter degradation, biodegradability enhancement and treatment costs for different reactors configuration,” Sci. Total Environ., vol. 724, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.138083 | spa |
dcterms.references | J. Umamaheswari, T. Bharathkumar, S. Shanthakumar, and K. M. Gothandam, “A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment,” Process Saf. Environ. Prot., vol. 143, pp. 212–221, 2020. DOI: https://doi.org/10.1016/j.psep.2020.06.040 | spa |
dcterms.references | F. Jiang, B. Qiu, and D. Sun, “Degradation of refractory organics from biologically treated incineration leachate by VUV/O3,” Chem. Eng. J., vol. 370, no. December 2018, pp. 346–353, 2019. DOI: https://doi.org/10.1016/j.cej.2019.03.206 | spa |
dcterms.references | H. R. AlGburi, H. A. Aziz, H. M. Zwain, and A. F. M. Noor, “Treatment of Landfill Leachate by Heterogeneous Catalytic Ozonation with Granular Faujasite Zeolite,” Environ. Eng. Sci., vol. 00, no. 00, 2020. | spa |
dcterms.references | M. Bourgin et al., “Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water,” Water Res., vol. 122, pp. 234–245, 2017. DOI: https://doi.org/10.1016/j.watres.2017.05.018 | spa |
dcterms.references | T. H. Van and T. V. Trinh, “Application of Regression Analysis for Ozone and Catalytic Ozonation of Organic Compounds from Landfill Leachate with Ceramic Raschig Rings and Natural Manganese Ore,” Ozone Sci. Eng., vol. 38, no. 2, pp. 133–142, 2016. DOI: https://doi.org/10.1080/01919512.2015.1112725 | spa |
dcterms.references | P. Asaithambi, B. Sajjadi, A. R. Abdul Aziz, and W. M. A. B. W. Daud, “Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD and determination of electrical energy from landfill leachate,” Sep. Purif. Technol., vol. 172, pp. 442–449, 2017. DOI: https://doi.org/10.1016/j.seppur.2016.08.041 | spa |
dcterms.references | F. Wang, Y. Huang, P. Wen, and Q. Li, “Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe0-participated O3/H2O2 process,” Chemosphere, vol. 263, p. 128198, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.128198 | spa |
dcterms.references | P. Gautam, S. Kumar, and S. Lokhandwala, “Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review,” J. Clean. Prod., vol. 237, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.117639 | spa |
dcterms.references | C. Wu, W. Chen, Z. Gu, and Q. Li, “A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment,” Sci. Total Environ., p. 143131, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.143131 | spa |
dcterms.references | M. Ghahrchi and A. Rezaee, “Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate,” J. Environ. Manage., vol. 254, no. October 2019, p. 109811, 2020. DOI: https://doi.org/10.1016/j.jenvman.2019.109811 | spa |
dcterms.references | A. P. J. Scandelai, E. Sloboda Rigobello, B. L. C. de Oliveira, and C. R. G. Tavares, “Identification of organic compounds in landfill leachate treated by advanced oxidation processes,” Environ. Technol. (United Kingdom), vol. 40, no. 6, pp. 730–741, 2019. DOI: https://doi.org/10.1080/09593330.2017.1405079 | spa |
dcterms.references | Y. Wang et al., “Effective removal of contaminants from biotreated leachate by a combined Fe(III)/O3 process: Efficiency and mechanisms,” J. Clean. Prod., vol. 276, no. Iii, p. 123379, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.123379 | spa |
dcterms.references | Z. Liu, L. Pan, F. Hu, and Y. Hu, “Advanced landfill leachate biochemical effluent treatment using Fe-Mn/AC activates O3/Na2S2O8 process: process optimization, wastewater quality analysis, and activator characterization,” Environ. Sci. Pollut. Res., vol. 27, no. 13, pp. 15337–15349, 2020. DOI: https://doi.org/10.1007/s11356-020-08046-2 | spa |
dcterms.references | H. R. AlGburi, H. A. Aziz, H. M. Zwain, and A. F. M. Noor, “Treatment of Landfill Leachate by Heterogeneous Catalytic Ozonation with Granular Faujasite Zeolite,” Environ. Eng. Sci., no. December, 2020. DOI: https://doi.org/10.1089/ees.2020.0233 | spa |
dcterms.references | A. Ikhlaq et al., “ Treatment of leachate through constructed wetlands using Typha angustifolia in combination with catalytic ozonation on Fe-zeolite A ,” Int. J. Phytoremediation, vol. 0, no. 0, pp. 1–9, 2020. | spa |
dcterms.references | Y. Xiang, Y. Chen, S. Luo, J. Zou, and A. Zhang, “Degradation of recalcitrant organic matter in SAARB leachate by a combined process of coagulation and catalytic ozonation,” Environ. Sci. Pollut. Res., vol. 27, no. 32, pp. 40219–40228, 2020. DOI: https://doi.org/10.1007/s11356-020-08292-4 | spa |
dcterms.references | D. Ranjbar-Vakilabadi, A. H. Hassani, G. Omrani, and B. Ramavandi, “Catalytic potential of Cu/Mg/Al-chitosan for ozonation of real landfill leachate,” Process Saf. Environ. Prot., vol. 107, pp. 227–237, 2017. DOI: https://doi.org/10.1016/j.psep.2017.02.013 | spa |
dcterms.references | M. A. Kamaruddin, M. S. Yusoff, L. M. Rui, A. M. Isa, M. H. Zawawi, and R. Alrozi, “An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives,” Environ. Sci. Pollut. Res., vol. 24, no. 35, pp. 26988–27020, 2017. DOI: https://doi.org/10.1007/s11356-017-0303-9 | spa |
dcterms.references | R. A. Agarwal, A. K. Agarwal, T. Gupta, and N. Sharma, Introduction to Pollutants from Energy Sources: Characterization and Control. 2019. DOI: https://doi.org/10.1007/978-981-13-3281-4 | spa |
dcterms.references | Y. Ogata et al., “Design considerations of constructed wetlands to reduce landfill leachate contamination in tropical regions,” J. Mater. Cycles Waste Manag., vol. 20, no. 4, pp. 1961–1968, 2018. DOI: https://doi.org/10.1007/s10163-018-0755-0 | spa |
dcterms.references | C. Ma et al., “Catalytic micro-ozonation by Fe3O4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate,” Waste Manag., vol. 83, pp. 23–32, 2019. DOI: https://doi.org/10.1016/j.wasman.2018.10.045 | spa |
dcterms.references | X. Tang, S. Zhu, X. Quan, X. Huang, F. Qiu, and C. Feng, “Degradation Treatment of Concentrated Landfill Leachate by Catalytic Ozonation in a Microbubble Reactor,” Ozone Sci. Eng., vol. 00, no. 00, pp. 1–14, 2020. | spa |
dcterms.references | K. S. Rajoo, D. S. Karam, A. Ismail, and A. Arifin, “Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC),” Environ. Nanotechnology, Monit. Manag., vol. 14, no. September, p. 100372, 2020. DOI: https://doi.org/10.1016/j.enmm.2020.100372 | spa |
dcterms.references | W. L. M. Braga et al., “Optimization of the treatment of sanitary landfill by the ozonization catalysed by modified nanovermiculite in a rotating packed bed,” J. Clean. Prod., vol. 249, p. 119395, 2020. DOI: https://doi.org/10.1016/j.jclepro.2019.119395 | spa |
dcterms.references | S. M. Iskander et al., “A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment,” Water Res., vol. 145, pp. 297–311, 2018. DOI: https://doi.org/10.1016/j.watres.2018.08.035 | spa |
dc.identifier.doi | 10.19053/01217488.v12.n2.2021.12503 | |
dc.publisher.place | Tunja, Colombia | spa |
dc.relation.citationedition | Vol.12 No.2 (2021) | spa |
dc.relation.citationendpage | 108 | spa |
dc.relation.citationissue | 2 (2021) | spa |
dc.relation.citationstartpage | 95 | spa |
dc.relation.citationvolume | 12 | spa |
dc.relation.cites | D. . Becerra-Moreno, Y. . Rubio-Gomez, L. F. Ramírez-Ríos, A. F. . . Barajas-Solano, y F. Machuca Martínez, «Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios», Cienc. En Desarro., vol. 12, n.º 2, sep. 2021. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Lixiviado de rellenos sanitarios | spa |
dc.subject.proposal | Ozono | spa |
dc.subject.proposal | PAOs | spa |
dc.subject.proposal | Tratamiento | spa |
dc.subject.proposal | andfill leachate | eng |
dc.subject.proposal | ozone | eng |
dc.subject.proposal | AOPs | eng |
dc.subject.proposal | treatment | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |