Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorEscudero-Atehortua, Ana
dc.contributor.authorNieto-Londoño, César
dc.date.accessioned2024-04-11T15:16:22Z
dc.date.available2024-04-11T15:16:22Z
dc.date.issued2022-08-02
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6881
dc.description.abstractHybrid solar thermal power plants using the Brayton cycle are currently of great interest as they have proven to be technically feasible. This study evaluates mechanisms to reduce fuel consumption and increase the power generated, improving plant efficiency. An energy and exergy model for the hybrid solar plant is developed using an estimation model for the solar resource to determine the plant operation under specific environmental conditions. The effect of using different working fluids in the Brayton cycle, such as air, and helium in transcritical conditions and carbon dioxide in subcritical and supercritical conditions, is evaluated. Additionally, the plant’s exergy destruction and exergy efficiency are evaluated. In those, it can be highlighted that the helium cycle in the same operating conditions compared to other working fluids can increase the power by 160%, increasing fuel consumption by more than 390%.eng
dc.format.extent24 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSustainability (Switzerland)spa
dc.relation.ispartofSustainability 2022, 14, 9479. https://doi.org/10.3390/su14159479
dc.rightsunder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2071-1050/14/15/9479spa
dc.titleAlternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycleeng
dc.typeArtículo de revistaspa
dcterms.referencesChen, L.; Zhang, W.; Sun, F. Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles. Appl. Energy 2007, 84, 512–525. [CrossRef]spa
dcterms.referencesObaideen, K.; AlMallahi, M.N.; Al-Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [CrossRef]spa
dcterms.referencesMills, D. Advances in solar thermal electricity technology. Sol. Energy 2004, 76, 19–31. [CrossRef]spa
dcterms.referencesNajjar, Y.S.; Zaamout, M.S. Comparative performance of closed cycle gas turbine engine with heat recovery using different gases. Heat Recover. Syst. CHP 1992, 12, 489–495. [CrossRef]spa
dcterms.referencesAl-Attab, K.; Zainal, Z. Externally fired gas turbine technology: A review. Appl. Energy 2015, 138, 474–487. [CrossRef]spa
dcterms.referencesOlumayegun, O.; Wang, M.; Kelsall, G. Closed-cycle gas turbine for power generation: A state-of-the-art review. Fuel 2016, 180, 694–717. [CrossRef]spa
dcterms.referencesUlrich, H. Closed-Cycle Gas Turbines: Operating Experience and Future Potential; ASME Press: New York, NY, USA, 2005.spa
dcterms.referencesWright, D.E.; Tignac, L.L. Status Report—Advanced Heat Exchanger Technology for a CCGT Power Generation System. J. Eng. Power 1983, 105, 348–353. [CrossRef]spa
dcterms.referencesHolt, C.F.; Boiarski, A.A.; Carlton, H.E. The Gas Turbine Heat Exchanger in the Fluidized Bed Combustor. J. Eng. Power 1983, 105, 438–445. [CrossRef]spa
dcterms.referencesAbram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy 2008, 36, 4323–4330. [CrossRef]spa
dcterms.referencesVera, D.; Jurado, F.; Carpio, J. Study of a downdraft gasifier and externally fired gas turbine for olive industry wastes. Fuel Process. Technol. 2011, 92, 1970–1979. [CrossRef]spa
dcterms.referencesPantaleo, A.; Camporeale, S.; Shah, N. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy. Energy Convers. Manag. 2013, 75, 202–213. [CrossRef]spa
dcterms.referencesCocco, D.; Deiana, P.; Cau, G. Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers. Energy 2006, 31, 1459–1471. [CrossRef]spa
dcterms.referencesSoltani, S.; Mahmoudi, S.; Yari, M.; Rosen, M. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Convers. Manag. 2013, 70, 107–115. [CrossRef]spa
dcterms.referencesDunham, M.T.; Iverson, B.D. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew. Sustain. Energy Rev. 2014, 30, 758–770. [CrossRef]spa
dcterms.referencesHeller, P.; Pfänder, M.; Denk, T.; Tellez, F.; Valverde, A.; Fernandez, J.; Ring, A. Test and evaluation of a solar powered gas turbine system. Sol. Energy 2006, 80, 1225–1230. [CrossRef]spa
dcterms.referencesChen, Y.; Cheng, Y.; Sun, M. Physical Mechanisms on Plasmon-Enhanced Organic Solar Cells. J. Phys. Chem. C 2021, 125, 21301–21309. [CrossRef]spa
dcterms.referencesChen, Y.; Cheng, Y.; Sun, M. Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale 2022, 14, 7269–7279. [CrossRef]spa
dcterms.referencesBarigozzi, G.; Perdichizzi, A.; Gritti, C.; Guaiatelli, I. Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions. Appl. Therm. Eng. 2015, 82, 57–67. [CrossRef]spa
dcterms.referencesLivshits, M.; Kribus, A. Solar hybrid steam injection gas turbine (STIG) cycle. Sol. Energy 2012, 86, 190–199. [CrossRef]spa
dcterms.referencesOlivenza-León, D.; Medina, A.; Calvo-Hernández, A. Thermodynamic modeling of a hybrid solar gas-turbine power plant. Energy Convers. Manag. 2015, 93, 435–447. [CrossRef]spa
dcterms.referencesSantos, M.; Merchán, R.; Medina, A.; Hernández, A.C. Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant. Energy Convers. Manag. 2016, 115, 89–102. [CrossRef]spa
dcterms.referencesMerchán, R.; Santos, M.; Reyes-Ramírez, I.; Medina, A.; Hernández, A.C. Modeling hybrid solar gas-turbine power plants: Thermodynamic projection of annual performance and emissions. Energy Convers. Manag. 2017, 134, 314–326. [CrossRef]spa
dcterms.referencesLiu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [CrossRef]spa
dcterms.referencesKulhánek, M.; Dostál, V. Supercritical carbon dioxide cycles thermodynamic analysis and comparison. In Supercritical CO2 Power Cycle, Proceedings of Supercritical CO2 Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009; EEUU: Boulder, CO, USA, 2011.spa
dcterms.referencesLiao, J.; Liu, X.; Zheng, Q.; Zhang, H. Analysis of the power generation cycle characteristics of supercritical carbon dioxide. J. Eng. Therm. Energy Power 2016, 31, 40–46spa
dcterms.referencesWang, X.; Yang, Y.; Zheng, Y.; Dai, Y. Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application. Energy 2017, 119, 971–982. [CrossRef]spa
dcterms.referencesWang, X.; Dai, Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl. Energy 2016, 170, 193–207. [CrossRef]spa
dcterms.referencesAkbari, A.D.; Mahmoudi, S.M. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 2014, 78, 501–512. [CrossRef]spa
dcterms.referencesBae, S.J.; Ahn, Y.; Lee, J.; Lee, J.I. Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide Rankine cycle combined fuel cell. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 3B.spa
dcterms.referencesCengel, Y.A.; Boles, M.E. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2012.spa
dcterms.referencesSantos, M.; Miguel-Barbero, C.; Merchán, R.; Medina, A.; Hernández, A.C. Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations. Energy Convers. Manag. 2018, 165, 578–592. [CrossRef]spa
dcterms.referencesMcDonald, C.F. Helium turbomachinery operating experience from gas turbine power plants and test facilities. Appl. Therm. Eng. 2012, 44, 108–142. [CrossRef]spa
dcterms.referencesBamrnert, K.; Groschup, G. Status report on closed-cycle power plants in the federal republic of Germany. J. Eng. Gas Turbines Power 1977, 99, 37–46. [CrossRef]spa
dcterms.referencesBaxi, C.; Telengator, A.; Razvi, J. Rotor scale model tests for power conversion unit of GT-MHR. Nucl. Eng. Des. 2012, 251, 344–348. [CrossRef]spa
dcterms.referencesOsigwe, E.O.; Gad-Briggs, A.; Nikolaidis, T. Feasibility of a Helium Closed-Cycle Gas Turbine for UAV Propulsion. Appl. Sci. 2021, 11, 28. [CrossRef]spa
dcterms.referencesAlali, A.E.; Al-Shboul, K.F. Performance analysis of the closed Brayton power cycle in a small-scale pebble bed gas cooled reactor using different working fluids. Ann. Nucl. Energy 2018, 121, 316–323. [CrossRef]spa
dcterms.referencesTesio, U.; Guelpa, E.; Verda, V. Multi-objective optimization of helium power cycle for thermo-chemical energy storage in concentrated solar power. Energy Convers. Manag. X 2021, 12, 100116. [CrossRef]spa
dcterms.referencesGueymard, C. Prediction and Performance Assessment of Mean Hourly Global Radiation. Sol. Energy 2000, 68, 285–303. [CrossRef]spa
dcterms.referencesGueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 2016, 128, 1–30. [CrossRef]spa
dcterms.referencesMejdoul, R.; Taqi, M.; Ben, S.; Hassan, U.; Mohammedia, I.I. The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco. Int. J. Renew. Energy Res. 2012, 2, 608–617.spa
dcterms.referencesYao, W.; Li, Z.; Xiu, T.; Lu, Y.; Li, X. New decomposition models to estimate hourly global solar radiation from the daily value. Sol. Energy 2015, 120, 87–99. [CrossRef]spa
dcterms.referencesPower Data Access Viewer. 2020. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 March 2020).spa
dcterms.referencesGoswami, Y. Principles of Solar Engineering, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015.spa
dcterms.referencesMoreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C. Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods. Therm. Sci. Eng. Prog. 2020, 20, 100679. [CrossRef]spa
dcterms.referencesRomero, M.; Buck, R.; Pacheco, J.E. An update on solar central receiver systems, projects, and technologies. J. Sol. Energy Eng. 2002, 124, 98–108. [CrossRef]spa
dcterms.referencesDuffie, J.; Beckman, W. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013.spa
dcterms.referencesChen, L.; Ni, N.; Sun, F. FTT Performance of a closed regenerative brayton cycle coupled to variable-temperature heat reservoir. In Proceedings of the International Conference on Marine Engineering, Varna, Bulgaria, 2–7 June 1996; pp. 371–1996.spa
dcterms.referencesZhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Appl. Energy 2009, 86, 1395–1404. [CrossRef]spa
dcterms.referencesZare, V.; Hasanzadeh, M. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants. Energy Convers. Manag. 2016, 128, 227–237. [CrossRef]spa
dcterms.referencesAtif, M.; Al-Sulaiman, F.A. Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renew. Sustain. Energy Rev. 2017, 68, 153–167. [CrossRef]spa
dcterms.referencesYue, T.; Lior, N. Thermal hybrid power systems using multiple heat sources of different temperature: Thermodynamic analysis for Brayton cycles. Energy 2018, 165, 639–665. [CrossRef]spa
dcterms.referencesPetela, R. Exergy of undiluted thermal radiation. Sol. Energy 2003, 74, 469–488. [CrossRef]spa
dcterms.referencesParrot, L.E. Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 1978, 21, 227–229. [CrossRef]spa
dcterms.referencesNeises, T.; Turchi, C. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications. Energy Procedia 2014, 49, 1187–1196. [CrossRef]spa
dcterms.referencesLee, H.J.; Kim, H.; Jang, C. Compatibility of Candidate Structural Materials in High-Temperature S-CO2 Environment. In Proceedings of the 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014; pp. 1–9.spa
dcterms.referencesAhn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [CrossRef]spa
dcterms.referencesChai, L.; Tassou, S.A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm. Sci. Eng. Prog. 2020, 18, 100543. [CrossRef]spa
dcterms.referencesCarbonDioxide—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/ CarbonDioxide.html (accessed on 21 March 2020).spa
dcterms.referencesModelica Association. Modelica.Media.Air.DryAirNasa. Available online: https://doc.modelica.org/Modelica%204.0.0/ Resources/helpWSM/Modelica/Modelica.Media.Air.DryAirNasa.html (accessed on 20 March 2021)spa
dcterms.referencesHelium—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/Helium. html (accessed on 21 March 2020).spa
dcterms.referencesMoreno-Gamboa, F.; Nieto-Londoño, C. Hybrid Brayton Multi-stage Concentrated Solar Power Plant Energy and Exergy Performance Study. J. Energy Resour. Technol. 2021, 143, 1–11. [CrossRef]spa
dcterms.referencesRamírez-Cerpa, E.; Acosta-Coll, M.; Vélez-Zapata, J. Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: Caso de estudio Barranquilla, Colombia. Idesia 2017, 35, 87–94. [CrossRef]spa
dcterms.referencesKotas, T.J. The Exergy Method of Thermal Plant Analysis; Kreiger Publishing Company: Malabar, FL, USA, 1995.spa
dc.identifier.doi/10.3390/su14159479
dc.relation.citationeditionVol.14 No.15 (2022)spa
dc.relation.citationendpage24spa
dc.relation.citationissue15 (2022)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume14spa
dc.relation.citesMoreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C. Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle. Sustainability 2022, 14, 9479. https://doi.org/10.3390/su14159479
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalBrayton cycleeng
dc.subject.proposalconcentrated solar powereng
dc.subject.proposalhybrid solar thermal power plant hybrideng
dc.subject.proposalexergy analysiseng
dc.subject.proposalworking fluid selectioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
Excepto si se señala otra cosa, la licencia del ítem se describe como under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)