Mostrar el registro sencillo del ítem


Mathematical model of a plenum to obtain the dynamic characteristics of the mass flow of a turbo-charger

dc.contributor.authorBermudez Santaella, Jose Ricardo
dc.contributor.authorSuarez, Oscar J.
dc.contributor.authorCabello Eras, Juan José
dc.date.accessioned2024-04-09T14:50:57Z
dc.date.available2024-04-09T14:50:57Z
dc.date.issued2023-12-15
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6862
dc.description.abstractLos turbocargadores en la actualidad han demostrado ser imprescindibles en el campo automotriz por ser máquinas que se encargan de aumentar la potencia, reducir el consumo de combustible y generar menos dióxido de carbono en un motor de combustión interna. En este artículo se presenta el desarrollo de un modelo matemático en base a un plenum, con el propósito de obtener las características dinámicas del flujo másico que genera un turbocargador. Para cumplir con lo propuesto se fundamentó en el conocimiento teórico-práctico de las leyes y conceptos que conforman un turbocargador, dando como resultado la simulación de un modelo matemático utilizando la herramienta Simulink. Para el desarrollo del modelo matemático se utilizaron datos teóricos y de pruebas en régimen estable y dinámico, así como el comportamiento del plenum sometido al sistema de compresión. Este modelo planteado contribuirá a la comunidad científica a través de la obtención de las características entre la relación de compresión y el flujo de masa del compresor de un turbocargador, también, aportará en el futuro al campo de la detección y diagnósticos de fallos orientados a los turbocargadores vehiculares.spa
dc.description.abstractTurbochargers have proven to be essential in the automotive field as they are machines responsible for increasing power, reducing fuel consumption, and generating less carbon dioxide in an internal combustion engine. This article presents the development of a mathematical model based on a plenum to obtain the dynamic characteristics of the mass flow generated by a turbocharger. To comply with the proposal, it was based on the theoretical-practical knowledge of the laws and concepts that make up a turbocharger, resulting in the simulation of a mathematical model using the Simulink tool. For the development of the mathematical model, theoretical and test data in stable and dynamic regimes were used, as well as the behavior of the plenum subjected to the compression system. This proposed model will contribute to the scientific community by obtaining the characteristics between the compression ratio and the compressor mass flow of a turbocharger and will also contribute to the field of detection and diagnosis of targeted failures in vehicle turbochargers.eng
dc.format.extent20 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Materiaspa
dc.relation.ispartofMatéria (Rio J.) 29 (1) 2024. https://doi.org/10.1590/1517-7076-RMAT-2023-0267
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licenseeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scielo.br/j/rmat/a/brv5MTfnPhpyvndVGvLWr5v/?lang=esspa
dc.titleModelo matemático de un plenum para obtener las características ­dinámicas del flujo másico de un turbocargadorspa
dc.titleMathematical model of a plenum to obtain the dynamic characteristics of the mass flow of a turbo-chargereng
dc.typeArtículo de revistaspa
dcterms.referencesNAVE, O., “A semi-analytical method applied to turbocharger engine model”, Journal of Applied Research and Technology, v. 18, n. 4, pp. 178–186, 2020. doi: http://dx.doi.org/10.22201/icat.24486736e.2020.18.4.1193. » https://doi.org/10.22201/icat.24486736e.2020.18.4.1193spa
dcterms.referencesPLOTNIKOV, L., ZHILKIN, B., BRODOV, M., “Management of thermal and mechanic flow characteristics in the output channels of a turbocharger centrifugal compressor”, Journal of Physics: Conference Series, v. 1369, n. 1, pp. 012002, 2019. doi: http://dx.doi.org/10.1088/1742-6596/1369/1/012002. » https://doi.org/10.1088/1742-6596/1369/1/012002spa
dcterms.referencesARNOLD, S., “Single sequential turbocharger: A new boosting concept for ultra-low emission diesel engines”, SAE International Journal of Engines, v. 1, n. 1, pp. 232–239, 2009. doi: http://dx.doi.org/10.4271/2008-01-0298. » https://doi.org/10.4271/2008-01-0298spa
dcterms.referencesMUQEEM, M., AHMAD, M., SHERWANI, A., “Turbocharging of diesel engine for improving performance and exhaust emissions: a review”, Journal of Mechanical and Civil Engineering, v. 12, n. 4, pp. 22–29, 2015. doi: http://dx.doi.org/10.9790/1684-12432229. » https://doi.org/10.9790/1684-12432229spa
dcterms.referencesLUO, Q., HU, J.-B., SUN, B., et al, “Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds”, International Journal of Hydrogen Energy, v. 44, n. 31, pp. 17095–17102, 2019. doi: http://dx.doi.org/10.1016/j.ijhydene.2019.03.245. » https://doi.org/10.1016/j.ijhydene.2019.03.245spa
dcterms.referencesPLAKSIN, A., GRITSENKO, A., GLEMBA, K., “Modernization of the turbocharger lubrication system of an internal combustion engine”, Procedia Engineering, v. 129, pp. 857–862, 2015. doi: http://dx.doi.org/10.1016/j.proeng.2015.12.122. » https://doi.org/10.1016/j.proeng.2015.12.122spa
dcterms.referencesPIANCASTELLI, L., FRIZZIERO, L., “Turbocharging and turbocompounding optimization in automotive racing”, Journal of Engineering and Applied Sciences, v. 9, n. 11, pp. 2192–2199, 2014.spa
dcterms.referencesFU, J., LIU, J., WANG, Y., et al, “A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery”, Applied Energy, v. 113, pp. 248–257, 2014. doi: http://dx.doi.org/10.1016/j.apenergy.2013.07.023. » https://doi.org/10.1016/j.apenergy.2013.07.023spa
dcterms.referencesZAMBONI, G., CAPOBIANCO, M., “Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine”, Applied Energy, v. 94, pp. 117–128, 2012. doi: http://dx.doi.org/10.1016/j.apenergy.2012.01.046. » https://doi.org/10.1016/j.apenergy.2012.01.046spa
dcterms.referencesGAO, W., LI, T., TANG, Z., et al, “Investigation on the comparative life cycle assessment between newly manufacturing and remanufacturing turbochargers”, Procedia CIRP, v. 61, pp. 750–755, 2017. doi: http://dx.doi.org/10.1016/j.procir.2016.11.214. » https://doi.org/10.1016/j.procir.2016.11.214spa
dcterms.referencesWU, B., HAN, Z., YU, X., et al, “A method for matching two-stage turbocharger system and its influence on engine performance”, Journal of Engineering for Gas Turbines and Power, v. 141, n. 5, pp. 18, 2018. doi: http://dx.doi.org/10.11151/1.4039461. » https://doi.org/10.11151/1.4039461spa
dcterms.referencesBABEL, M., KOSSOV, B., “Model of exhaust system of a traction diesel engine with pulse supercharging on transient modes”, Combustion Engines, v. 168, n. 1, pp. 38–45, 2017. doi: http://dx.doi.org/10.19206/CE-2017-106. » https://doi.org/10.19206/CE-2017-106spa
dcterms.referencesWANG, J., SHEN, L., BI, Y., et al, “Influences of a variable nozzle turbocharger on the combustion and emissions of a light-duty diesel engine at different altitudes”, Fuel, v. 349, pp. 128626, 2023. doi: http://dx.doi.org/10.1016/j.fuel.2023.128626. » https://doi.org/10.1016/j.fuel.2023.128626spa
dcterms.referencesMEDICA, V., Simulation of turbocharged diesel engine driving electrical generator under dynamic working conditions, Rijeka, University of Rijeka, 1988.spa
dcterms.referencesMOUSAVI, S., NEJAT, A., ALAVIYOUN, S., et al, “An Integrated turbocharger matching program for internal combustion engines”, Journal of Applied Fluid Mechanics, v. 14, n. 4, pp. 1209–1222, 2021. doi: http://dx.doi.org/10.47176/jafm.14.04.32037. » https://doi.org/10.47176/jafm.14.04.32037spa
dcterms.referencesTSIAKMAKIS, S., FONTARAS, G., ANAGNOSTOPOULOS, K., et al, “A simulation based approach for quantifying CO2 emissions of light duty vehicle fleets: a case study on WLTP introduction”, Transportation Research Procedia, v. 25, pp. 3898–3908, 2017. doi: http://dx.doi.org/10.1016/j.trpro.2017.05.308. » https://doi.org/10.1016/j.trpro.2017.05.308spa
dcterms.referencesMANSOURI, H., OMMI, F., “Performance prediction of aircraft gasoline turbocharged engine at high-altitudes”, Applied Thermal Engineering, v. 156, pp. 587–596, 2019. doi: http://dx.doi.org/10.1016/j.applthermaleng.2019.04.116. » https://doi.org/10.1016/j.applthermaleng.2019.04.116spa
dcterms.referencesWOJCIECHOWSKI, H., ZÓLTOWSKI, B., “Exploitation of car turbochargers - selected problems”, MATEC Web Conference, v. 302, pp. 01024, 2019. doi: http://dx.doi.org/10.1051/matecconf/201930201024. » https://doi.org/10.1051/matecconf/201930201024spa
dcterms.referencesHEDAU, G., RAJ, R., SAHA, S., “Effect of outlet plenum design on flow boiling heat transfer in microchannel heat sinks”, Journal of Sound and Vibration, v. 139, pp. 2020, 2023.spa
dcterms.referencesDEHNER, R., SELAMET, A., “Physics of deep surge in an automotive turbocharger centrifugal compression system”, Journal of Engineering for Gas Turbines and Power, v. 141, n. 6, pp. 061003, 2019. doi: http://dx.doi.org/10.1115/1.4042303. » https://doi.org/10.1115/1.4042303spa
dcterms.referencesANDREARCZYK, A., “Flow characteristics of an automotive compressor with an additively manufactured rotor disc”, Archives of Thermodynamics, v. 42, n. 1, pp. 3–13, 2023. doi: http://dx.doi.org/10.24425/ather.2021.136944. » https://doi.org/10.24425/ather.2021.136944spa
dcterms.referencesMCMULLEN, R., PINO, Y., “Conditioning turbocharger compressor map data for use in engine performance simulation”, SAE International Journal of Engines, v. 11, n. 4, pp. 491–507, 2018. doi: http://dx.doi.org/10.4271/03-11-04-0033. » https://doi.org/10.4271/03-11-04-0033spa
dcterms.referencesSHEORAN, Y., BOULDIN, B., HOOVER, R., et al, “A centrifugal compressor operability correlation with combined total pressure and swirl distortion”, Proceedings of the ASME Turbo Expo, v. 1, pp. 1–11, 2017. doi: http://dx.doi.org/10.1115/GT2017-63721. » https://doi.org/10.1115/GT2017-63721spa
dcterms.referencesGRAPOW, F., LISKIEWICZ, G., “Compressor modeling using greitzer model validated by pressure oscillations”, Transition of the Institute of Fluid-Flow Machinery, v. 133, pp. 69–89, 2016.spa
dcterms.referencesGRAVDAHL, J., EGELAND, O., “Speed and surge control for a low order centrifugal compressor model”, Modeling, Identification and Control, v. 19, n. 1, pp. 13–29, 1998. doi: http://dx.doi.org/10.4173/mic.1998.1.2. » https://doi.org/10.4173/mic.1998.1.2spa
dcterms.referencesHANSEN, K., JORGENSEN, P., LARSEN, P., “Experimental and theoretical study of surge in a small centrifugal compressor”, Journal of Fluids Engineering, v. 103, n. 3, pp. 391–395, 1981. doi: http://dx.doi.org/10.1115/1.3240796. » https://doi.org/10.1115/1.3240796spa
dcterms.referencesHOLDEN, T., “Modeling and control of a wet-gas centrifugal compressor “, IEEE Transactions on Control Systems Technology, v. 29, n. 3, pp. 1175–1190, 2021. doi: http://dx.doi.org/10.1109/TCST.2020.2993224. » https://doi.org/10.1109/TCST.2020.2993224spa
dcterms.referencesSERRANO, J., ARNAU, F., DOLZ, V., et al, “A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling”, Energy Conversion and Management, v. 49, n. 12, pp. 3729–3745, 2008. doi: http://dx.doi.org/10.1016/j.enconman.2008.06.031. » https://doi.org/10.1016/j.enconman.2008.06.031spa
dcterms.referencesZHENG, X., SUN, Z., KAWAKUBO, T., et al, “Experimental investigation of surge and stall in a turbocharger centrifugal compressor with a vaned diffuser”, Experimental Thermal and Fluid Science, v. 82, pp. 493–506, 2017. doi: http://dx.doi.org/10.1016/j.expthermflusci.2016.11.036. » https://doi.org/10.1016/j.expthermflusci.2016.11.036spa
dcterms.referencesANDERSSON, P., Air charge estimation in turbocharged spark ignition engines, Linköping, Linköpings Universitet, 2005.spa
dcterms.referencesVAN HELVOIRT, J. “Centrifugal compressor surge: modeling and identification for control”, Eindhoven: Technische Universiteit Eindhoven, 2007. doi: http://dx.doi.org/10.6100/IR629084 » https://doi.org/10.6100/IR629084spa
dcterms.referencesFANG, X., CHEN, W., ZHOU, Z., et al, “Empirical models for efficiency and mass flow rate of centrifugal compressors”, International Journal of Refrigeration, v. 41, pp. 190–199, 2014. doi: http://dx.doi.org/10.1016/j.ijrefrig.2014.03.005. » https://doi.org/10.1016/j.ijrefrig.2014.03.005spa
dcterms.referencesVENSON, G., BARROS, J. “Turbocharger performance maps building using a hot gas test stand”, in Proceedings of the ASME Turbo Expo, 2008, pp. 777–785. doi: http://dx.doi.org/10.1115/GT2008-50994. » https://doi.org/10.1115/GT2008-50994spa
dcterms.referencesARGOLINI, R., BLOISI, V., “On optimal control of the wastegate in a turbocharged SI engine”, M.Sc. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2007.spa
dcterms.referencesGRAVDAHL, J., EGELAND, O., VATLAND, S., “Active surge control of centrifugal compressors using drive torque”, In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 1286–1291, Dec. 2001. doi: http://dx.doi.org/10.1109/CDC.2001.981067 » https://doi.org/10.1109/CDC.2001.981067spa
dcterms.referencesTORREGROSA, A., BROATCH, A., MARGOT, X., et al, “Local flow measurements in a turbocharger compressor inlet”, Experimental Thermal and Fluid Science, v. 88, pp. 542–553, 2017. doi: http://dx.doi.org/10.1016/j.expthermflusci.2017.07.007. » https://doi.org/10.1016/j.expthermflusci.2017.07.007spa
dcterms.referencesGRONG, T., “Modeling of compressor characterisics and active surge control”, M.Sc. Thesis, Norwegian University of Science and Technology, Trondheim, pp. 1–97, 2009, http://hdl.handle.net/11250/259909, accessed in December, 2023. » http://hdl.handle.net/11250/259909spa
dcterms.referencesLEUFVÉN, O., Compressor modeling for control of automotive two stage turbochargers, Linköping, Linköpings Universitet, 2010.spa
dcterms.referencesROMAGNOLI, S., MANIVANNAN, A., RAJOO, S., et al, “A review of heat transfer in turbochargers”, Renewable & Sustainable Energy Reviews, v. 79, pp. 1442–1460, 2017. doi: http://dx.doi.org/10.1016/j.rser.2017.04.119. » https://doi.org/10.1016/j.rser.2017.04.119spa
dcterms.referencesCHUNG, J., CHUNG, W., KIM, N., et al, “An investigation on the efficiency correction method of the turbocharger at low speed”, Energies, v. 11, n. 2, pp. 269, 2018. doi: http://dx.doi.org/10.3390/en11020269. » https://doi.org/10.3390/en11020269spa
dcterms.referencesBURKE, R., OLMEDA, P., SERRANO, J., “Dynamic identification of thermodynamic parameters for turbocharger compressor models”, Journal of Engineering for Gas Turbines and Power, v. 137, n. 10, pp. 102603, 2015. doi: http://dx.doi.org/10.1115/1.4030092. » https://doi.org/10.1115/1.4030092spa
dcterms.referencesMARTIN, G., TALON, V., HIGELIN, P., et al, “Implementing turbomachinery physics into data map-based turbocharger models”, SAE International Journal of Engines, v. 2, n. 1, pp. 211–229, 2009. doi: http://dx.doi.org/10.4271/2009-01-0310. » https://doi.org/10.4271/2009-01-0310spa
dcterms.referencesSEMLITSCH, B., MIHAESCU, M., “Flow phenomena leading to surge in a centrifugal compressor”, Energy, v. 103, pp. 572–587, 2016. doi: http://dx.doi.org/10.1016/j.energy.2016.03.032. » https://doi.org/10.1016/j.energy.2016.03.032spa
dcterms.referencesFABRA RIVERA, A., RODRÍGUEZ JIMÉNEZ, F., BERMÚDEZ SANTAELLA, J., et al, “Mathematical model of a combustion chamber of a pirotubular boiler using the matlab-simulink tool”, Revista Matéria, v. 25, n. 3, e-12812, 2020. doi: http://dx.doi.org/10.1590/s1517-707620200003.1112. » https://doi.org/10.1590/s1517-707620200003.1112spa
dcterms.referencesKERRES, B., NAIR, V., CRONHJORT, A., et al, “Analysis of the turbocharger compressor surge margin using a hurst-exponent-based criterion”, SAE International Journal of Engines, v. 9, n. 3, pp. 1795–1806, 2016. doi: http://dx.doi.org/10.4271/2016-01-1027. » https://doi.org/10.4271/2016-01-1027spa
dcterms.referencesSERRANO, J., OLMEDA, P., TISEIRA, A., et al, “Theoretical and experimental study of mechanical losses inautomotive turbochargers”, Energy, v. 55, pp. 888–898, Jun. 2013. doi: http://dx.doi.org/10.1016/j.energy.2013.04.042. » https://doi.org/10.1016/j.energy.2013.04.042spa
dcterms.referencesTHOMASSON, A., ERIKSSON, L., “Effects of pulsating flow on mass flow balance and surge margin”, International Journal of Mechanic Engineering and Technology, v. 9, n. 1, pp. 308–319, 2018. doi: http://dx.doi.org/10.3384/ecp1511915. » https://doi.org/10.3384/ecp1511915spa
dcterms.referencesBAINES, N., WYGANT, K., DRIS, A., “The analysis of heat transfer in automotive turbochargers”, Journal of Engineering for Gas Turbines and Power, v. 132, n. 4, pp. 042301, Apr. 2010. doi: http://dx.doi.org/10.1115/1.3204586. » https://doi.org/10.1115/1.3204586spa
dcterms.referencesLEON, N., TORRES, S., “Controller for a SPS machine: a proposal PI control”, Revista Matéria, v. 23, n. 2, e12142, 2018. doi: http://dx.doi.org/10.1590/S1517-707620180002.0475. » https://doi.org/10.1590/S1517-707620180002.0475spa
dc.identifier.doihttps://doi.org/10.1590/1517-7076-RMAT-2023-0267
dc.relation.citationeditionVol.29. No.1(2024)spa
dc.relation.citationendpage20spa
dc.relation.citationissue1 (2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume29spa
dc.relation.citesSANTAELLA, J.R.B., SUAREZ O.J., ERAS, J.J.C.Mathematical model of a plenum to obtain the dynamic characteristics of the mass flow of a turbo-charger, revista Matéria, v.29, n.1, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalTurbocargadorspa
dc.subject.proposalflujo másicospa
dc.subject.proposalcompresorspa
dc.subject.proposalturbinaspa
dc.subject.proposalsurgespa
dc.subject.proposalsimulaciónspa
dc.subject.proposalTurbochargerseng
dc.subject.proposalmass floweng
dc.subject.proposalcompressoreng
dc.subject.proposalturbineeng
dc.subject.proposalsurgeeng
dc.subject.proposalsimulationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
Excepto si se señala otra cosa, la licencia del ítem se describe como This is an Open Access article distributed under the terms of the Creative Commons Attribution License