Mostrar el registro sencillo del ítem

dc.contributor.authorKaewnukultorn, Thunchanok
dc.contributor.authorSepúlveda, Sergio
dc.contributor.authorBroadwater, Robert
dc.contributor.authorTsoutsos, Nektarios Georgios
dc.contributor.authorHegedus, Steven
dc.date.accessioned2024-04-04T14:00:49Z
dc.date.available2024-04-04T14:00:49Z
dc.date.issued2023-08-23
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6809
dc.description.abstractThis paper evaluates residential smart photovoltaic (PV) inverters’ responses to cyberattacks and assesses the performance of an intrusion detection strategy for smart grid devices by comparing timeseries power flow results from a simulation application called Faster Than Real-Time (FTRT) Simulator to measurements from a Power Hardware-in-the-Loop (P-HIL) laboratory as a testbed. Twenty different cyberattacks from three classes - Denial of Service (DoS), Intermittent attack, and Modification - were designed and tested with grid-tied smart inverters in order to study the inverters’ responses to malicious activities. The intrusion detection strategy was developed using a comparison between the predicted PV power output from FTRT and the power flows measured from P-HIL laboratory through the API interface. Real and reactive power thresholds were assigned based on a number of repeated experiments to ensure the applicability of the thresholds. The results showed that inverters from different manufacturers have their own unique responses which could be detected by the power flow measurements. Our detection method could identify over 94% of actual malicious actions and 7.4% of no-attack hours are detected as false positives. Out of 38 under-attack hours, 2 undetected hours are due to the intermittent attacks. Different attacks can be detected based on the targeted components of the complex power that attackers are aiming to cause disturbances. Our findings additionally show that DoS can be noticed immediately after the devices have been sabotaged, and they can be detected from the active power analysis. However, modification attack detection will depend more on the reactive power measurements, while intermittent attacks remain the most challenging for the proposed detection method since the objective of intermittent attacks is to create an oscillation of the complex power components which need a relatively high time resolution for the measurement.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIEEE Accessspa
dc.relation.ispartofFeras Alasali, Awni Itradat, Salah Abu Ghalyon, Mohammad Abudayyeh, Naser El-Naily, Ali M. Hayajneh, Anas AlMajali, "Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats", Smart Cities, vol.7, no.1, pp.51, 2023.
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://ieeexplore.ieee.org/document/10227258spa
dc.titleSmart PV Inverter Cyberattack Detection Using Hardware-in-the-Loop Test Facilityeng
dc.typeArtículo de revistaspa
dcterms.referencesRenewable Energy World. (2013). Breakdown: Penetration of Renewable Energy in Selected Markets. [Online]. Available: https:// www.renewableenergyworld.com/baseload/penetration-of-renewableenergy-in-selected-marketsspa
dcterms.referencesB. Mirafzal and A. Adib, ‘‘On grid-interactive smart inverters: Features and advancements,’’ IEEE Access, vol. 8, pp. 160526–160536, 2020.spa
dcterms.referencesJ. H. Braslavsky, L. D. Collins, and J. K. Ward, ‘‘Voltage stability in a grid-connected inverter with automatic volt-watt and volt-VAR functions,’’ IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 84–94, Jan. 2019.spa
dcterms.referencesS. Zuo, O. A. Beg, F. L. Lewis, and A. Davoudi, ‘‘Resilient networked AC microgrids under unbounded cyber attacks,’’ IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3785–3794, Sep. 2020.spa
dcterms.referencesA. Majumdar, Y. P. Agalgaonkar, B. C. Pal, and R. Gottschalg, ‘‘Centralized volt–var optimization strategy considering malicious attack on distributed energy resources control,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 148–156, Jan. 2018.spa
dcterms.referencesY. Zhang, J. Wang, and B. Chen, ‘‘Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach,’’ IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 623–634, Jan. 2021.spa
dcterms.referencesN. Duan, N. Yee, B. Salazar, J.-Y. Joo, E. Stewart, and E. Cortez, ‘‘Cybersecurity analysis of distribution grid operation with distributed energy resources via co-simulation,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), Aug. 2020, pp. 1–5.spa
dcterms.referencesN. Duan, N. Yee, A. Otis, J.-Y. Joo, E. Stewart, A. Bayles, N. Spiers, and E. Cortez, ‘‘Mitigation strategies against cyberattacks on distributed energy resources,’’ in Proc. IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. (ISGT), Feb. 2021, pp. 1–5.spa
dcterms.referencesS. Sridhar and M. Govindarasu, ‘‘Model-based attack detection and mitigation for automatic generation control,’’ IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 580–591, Mar. 2014.spa
dcterms.referencesT. O. Olowu, S. Dharmasena, H. Jafari, and A. Sarwat, ‘‘Investigation of false data injection attacks on smart inverter settings,’’ in Proc. IEEE CyberPELS, Oct. 2020, pp. 1–6.spa
dcterms.referencesS. Liu, X. P. Liu, and A. El Saddik, ‘‘Denial-of-service (dos) attacks on load frequency control in smart grids,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. (ISGT), Feb. 2013, pp. 1–6.spa
dcterms.referencesS. Asri and B. Pranggono, ‘‘Impact of distributed denial-of-service attack on advanced metering infrastructure,’’ Wireless Pers. Commun., vol. 83, no. 3, pp. 2211–2223, Aug. 2015.spa
dcterms.referencesM. A. Rahman and H. Mohsenian-Rad, ‘‘False data injection attacks with incomplete information against smart power grids,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2012, pp. 3153–3158.spa
dcterms.referencesQ. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, ‘‘On false data-injection attacks against power system state estimation: Modeling and countermeasures,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3, pp. 717–729, Mar. 2014spa
dcterms.referencesK. Manandhar, X. Cao, F. Hu, and Y. Liu, ‘‘Detection of faults and attacks including false data injection attack in smart grid using Kalman filter,’’ IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 370–379, Dec. 2014.spa
dcterms.referencesG. F. Lauss, M. O. Faruque, K. Schoder, C. Dufour, A. Viehweider, and J. Langston, ‘‘Characteristics and design of power hardware-in-the-loop simulations for electrical power systems,’’ IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 406–417, Jan. 2016.spa
dcterms.referencesV. H. Nguyen, Y. Besanger, Q. T. Tran, C. Boudinnet, T. L. Nguyen, R. Brandl, and T. I. Strasser, ‘‘Using power-hardware-in-the-loop experiments together with co-simulation for the holistic validation of cyberphysical energy systems,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT-Europe). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Sep. 2017, pp. 1–6.spa
dcterms.referencesT. Reinikka, H. Alenius, T. Roinila, and T. Messo, ‘‘Power hardware-inthe-loop setup for stability studies of grid-connected power converters,’’ in Proc. Int. Power Electron. Conf. (IPEC-Niigata -ECCE Asia). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, May 2018, pp. 1704–1710.spa
dcterms.referencesJ.-H. Jung, ‘‘Power hardware-in-the-loop simulation (PHILS) of photovoltaic power generation using real-time simulation techniques and power interfaces,’’ J. Power Sources, vol. 285, pp. 137–145, Jul. 2015.spa
dcterms.referencesJ. Kollmer, S. Biswas, L. Bai, A. Sarwat, and W. Saad, ‘‘A hardware-in-theloop experimental platform for power grid security,’’ in Proc. ASEE Annu. Conf. Expo., 2018, pp. 1–6.spa
dcterms.referencesZ. Liu, Q. Wang, and Y. Tang, ‘‘Design of a cosimulation platform with hardware-in-the-loop for cyber-attacks on cyber-physical power systems,’’ IEEE Access, vol. 8, pp. 95997–96005, 2020.spa
dcterms.referencesJ. Choi, D. Narayanasamy, B. Ahn, S. Ahmad, J. Zeng, and T. Kim, ‘‘A real-time hardware-in-the-loop (HIL) cybersecurity testbed for power electronics devices and systems in cyber-physical environments,’’ in Proc. IEEE 12th Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Jun. 2021, pp. 1–5.spa
dcterms.referencesE. Naderi and A. Asrari, ‘‘Hardware-in-the-Loop experimental validation for a lab-scale microgrid targeted by cyberattacks,’’ in Proc. 9th Int. Conf. Smart Grid (icSmartGrid), Jun. 2021.spa
dcterms.referencesB. A. Bhatti, R. Broadwater, and M. Delik, ‘‘Integrated T&D modeling vs. co-simulation—Comparing two approaches to study smart grid,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), Atlanta, GA, USA, Aug. 2019, pp. 1–5.spa
dcterms.referencesH. Jain, B. A. Bhatti, T. Wu, B. Mather, and R. Broadwater, ‘‘Integrated transmission-and-distribution system modeling of power systems: Stateof-the-art and future research directions,’’ Energies, vol. 14, no. 1, p. 12, Dec. 2020.spa
dcterms.referencesT. Kaewnukultorn, S. B. Sepúlveda-Mora, and S. Hegedus, ‘‘Characterization of voltage stabilization functions of residential PV inverters in a power hardware-in-the-loop environment,’’ IEEE Access, vol. 10, pp. 114802–114813, 2022.spa
dcterms.referencesC. Konstantinou, M. Sazos, and M. Maniatakos, ‘‘Attacking the smart grid using public information,’’ in Proc. 17th Latin-Amer. Test Symp. (LATS), Apr. 2016, pp. 105–110.spa
dcterms.referencesIEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources With Electric Power Systems and Associated Interfaces, IEEE Standard 1547.1-2020, IEEE, 2020.spa
dcterms.referencesD. Almeida, J. Pasupuleti, and J. Ekanayake, ‘‘Comparison of reactive power control techniques for solar PV inverters to mitigate voltage rise in low-voltage grids,’’ Electronics, vol. 10, no. 13, p. 1569, Jun. 2021.spa
dcterms.referencesM. Robinson, ‘‘The SCADA threat landscape,’’ in Proc. 1st Int. Symp. ICS SCADA Cyber Secur. Res., 2013, pp. 30–41. [Online]. Available: https://www.eads.comspa
dcterms.referencesC. Parian, T. Guldimann, and S. Bhatia, ‘‘Fooling the master: Exploiting weaknesses in the modbus protocol,’’ in Proc. 3rd Int. Conf. Comput. Netw. Commun., 2020, pp. 2453–2458.spa
dcterms.referencesZ. E. Mrabet, N. Kaabouch, H. E. Ghazi, and H. E. Ghazi, ‘‘Cyber-security in smart grid: Survey and challenges,’’ Comput. Electr. Eng., vol. 67, pp. 469–482, Apr. 2018.spa
dcterms.referencesJ. Johnson, J. Quiroz, R. Concepcion, F. Wilches-Bernal, and M. J. Reno, ‘‘Power system effects and mitigation recommendations for DER cyberattacks,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 4, no. 3, pp. 240–249, Sep. 2019.spa
dcterms.referencesT. Armin, M.-S. Ali, and L. Chen-Ching, ‘‘Cyber security risk assessment of solar PV units with reactive power capability,’’ in Proc. 44th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2018, pp. 2872–2877.spa
dcterms.referencesJ. Matherly, ‘‘Complete guide to Shodan,’’ Shodan, LLC, 2015, vol. 1.spa
dcterms.referencesY. Chen, X. Lian, D. Yu, S. Lv, S. Hao, and Y. Ma, ‘‘Exploring Shodan from the perspective of industrial control systems,’’ IEEE Access, vol. 8, pp. 75359–75369, 2020.spa
dcterms.referencesH. Shaalan, J. Thompson, R. Broadwater, M. Ellis, and H. Ng, ‘‘Distribution engineering tool features a flexible framework,’’ IEEE Comput. Appl. Power, vol. 8, no. 3, pp. 21–24, Jul. 1995.spa
dcterms.referencesElectrical Distribution Design. (2019). Building a Better Grid Through Innovation. [Online]. Available: https://www.edd-us.com/m2iegs/spa
dcterms.referencesP. Cichonski, T. Millar, T. Grance, and K. Scarfone, ‘‘Computer security incident handling guide: Recommendations of the National Institute of Standards and Technology,’’ Nat. Inst. Standards Technol., Tech. Rep., 2012. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800- 61r2.pdfspa
dcterms.referencesT. Gunda, ‘‘Inverter faults & failures: Common modes & patterns,’’ in Proc. Photovolt. Rel. Workshop. U.S. Department of Energy Office of Scientific and Technical Information, 2020. [Online]. Available: https://www.osti.gov/servlets/purl/1767382spa
dcterms.referencesA. Nagarajan, R. Thiagarajan, I. Repins, and P. Hacke, ‘‘Photovoltaic inverter reliability assessment,’’ Nat. Renew. Energy Lab., Tech. Rep., Oct. 2019. [Online]. Available: https://www.nrel.gov/ docs/fy20osti/74462.pdfspa
dc.identifier.doi10.1109/ACCESS.2023.3308052
dc.relation.citationeditionVol.11. (2023)spa
dc.relation.citationendpage90779spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage90766spa
dc.relation.citationvolume11spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalSmart inverterseng
dc.subject.proposalcyberattackseng
dc.subject.proposalhardware-in-the-loop laboratoryeng
dc.subject.proposalgrid supporting functioneng
dc.subject.proposalcyberattack detectioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/