Mostrar el registro sencillo del ítem

dc.contributor.authorVillada Castillo, Dora Clemencia
dc.contributor.authorValencia, Guillermo
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2024-04-02T15:01:47Z
dc.date.available2024-04-02T15:01:47Z
dc.date.issued2023-02-28
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6783
dc.description.abstractThe present study focused on the analysis of a new geometrical modification of the conventional zig-zag channel for Printed Circuit Heat Exchangers. The research was carried out using OpenFOAM and Salome software, which were used for the CFD analysis and the construction of the computational domain. For the development of the study, three types of channel geometries were defined: a modified zig-zag channel, a conventional zig-zag channel, and a straight channel. The results show that the modified zig-zag channel achieves better thermal hydraulic performance compared to that of the conventional zig-zag channel, evidenced by a 7.6% increase in the thermal performance factor. The modified zig-zag channel proposed in the research caused a 1.5% reduction of the power consumption of supercritical Brayton cycle compressors. Additionally, the modified zig-zag channel achieves a maximum efficiency of 49.1%, which is 1.5% higher compared to that of the conventional zig-zag channel. The above results caused a 20.9% reduction of the operating costs of the supercritical Brayton cycle. This leads to a 5.9% decrease in the cost associated with using the PCHE compared to that of the conventional zig-zag channel. In general, the new geometric characteristics proposed for the conventional zig-zag channel minimize the high loss of the hydraulic performance without significantly compromising its heat transfer capacity. The geometric analysis of the proposed new zig-zag channel geometry was limited to evaluating the influence of the bend angle of 20–30◦ . Therefore, a more detailed geometric optimization process involving other geometric parameters of the channel is still needed. Future research will be focused on addressing this approacheng
dc.format.extent24 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnergiesspa
dc.relation.ispartofVillada-Castillo, D.; Valencia-Ochoa, G.; Duarte-Forero, J. Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO2 Brayton Cycle. Energies 2023, 16, 2326. https:// doi.org/10.3390/en16052326
dc.rightsunder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/1996-1073/16/5/2326spa
dc.titleThermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO2 Brayton Cycleeng
dc.typeArtículo de revistaspa
dcterms.referencesEstrada, L.; Moreno, E.; Gonzalez-Quiroga, A.; Bula, A.; Duarte-Forero, J. Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine. Heliyon 2022, 8, e09285. [CrossRef]spa
dcterms.referencesDuarte-Forero, J.; Mendoza-Casseres, D.; Valencia-Ochoa, G. Energy, Exergy, and emissions (3E) assessment of a low-displacement engine powered by biodiesel blends of palm oil mill effluent (POME) and hydroxy gas. Therm. Sci. Eng. Prog. 2021, 26, 101126. [CrossRef]spa
dcterms.referencesEspinel Blanco, E.; Valencia Ochoa, G.; Duarte Forero, J. Thermodynamic, Exergy and Environmental Impact Assessment of SCO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies 2020, 13, 2259. [CrossRef]spa
dcterms.referencesVasquez, R.; Chean, Y.; Too, S.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365.spa
dcterms.referencesValencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures. Energies 2019, 12, 4643. [CrossRef]spa
dcterms.referencesPeng, M.Y.-P.; Chen, C.; Peng, X.; Marefati, M. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustain. Energy Technol. Assess. 2020, 39, 100713. [CrossRef]spa
dcterms.referencesValencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. [CrossRef]spa
dcterms.referencesGholamian, E.; Ahmadi, P.; Hanafizadeh, P.; Ashjaee, M. Dynamic feasibility assessment and 3E analysis of a smart building energy system integrated with hybrid photovoltaic-thermal panels and energy storage. Sustain. Energy Technol. Assess. 2020, 42, 100835. [CrossRef]spa
dcterms.referencesDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. [CrossRef]spa
dcterms.referencesGuillin-Estrada, W.; Maestre-Cambronel, D.; Bula-Silvera, A.; Gonzalez-Quiroga, A.; Duarte-Forero, J. Combustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxy. Appl. Sci. 2021, 11, 5282. [CrossRef]spa
dcterms.referencesDuarte, N.; Arango, D.; Polanco, G.; Valencia, G.; Duarte-Forero, J. Experimental evaluation of low-displacement compression ignited engines operating with hydroxy gas as a supplementary gaseous fuel. Heliyon 2022, 8, e11545. [CrossRef]spa
dcterms.referencesMarchionni, M.; Chai, L.; Bianchi, G.; Tassou, S.A. Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Appl. Therm. Eng. 2019, 161, 114190. [CrossRef]spa
dcterms.referencesPark, J.H.; Kwon, J.G.; Kim, T.H.; Kim, M.H.; Cha, J.-E.; Jo, H. Experimental study of a straight channel printed circuit heat exchanger on supercritical CO2 near the critical point with water cooling. Int. J. Heat Mass Transf. 2020, 150, 119364. [CrossRef]spa
dcterms.referencesSanaye, S.; Khakpaay, N.; Chitsaz, A. Thermo-economic and environmental multi-objective optimization of a novel arranged biomass-fueled gas engine and backpressure steam turbine combined system for pulp and paper mills. Sustain. Energy Technol. Assess. 2020, 40, 100778. [CrossRef]spa
dcterms.referencesJing, Q.; Xie, Y.; Zhang, D. Thermal hydraulic performance of printed circuit heat exchanger with various channel configurations and arc ribs for SCO2 Brayton cycle. Int. J. Heat Mass Transf. 2020, 150, 119272. [CrossRef]spa
dcterms.referencesDuarte Forero, J.; Obregon, L.; Valencia, G. Comparative analysis of intelligence optimization algorithms in the thermo-economic performance of an energy recovery system based on Organic Rankine Cycle. J. Energy Resour. Technol. 2021, 1–18. [CrossRef]spa
dcterms.referencesStand, L.M.; Ochoa, G.V.; Forero, J.D. Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source. Renew. Energy 2021, 175, 119–142. [CrossRef]spa
dcterms.referencesValencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165. [CrossRef]spa
dcterms.referencesHerrera-Orozco, I.; Valencia-Ochoa, G.; Duarte-Forero, J. Exergo-environmental assessment and multi-objective optimization of waste heat recovery systems based on Organic Rankine cycle configurations. J. Clean. Prod. 2021, 288, 125679–125694. [CrossRef]spa
dcterms.referencesOchoa, G.V.; Prada, G.; Duarte-Forero, J. Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle. J. Clean. Prod. 2020, 274, 122838–122857. [CrossRef]spa
dcterms.referencesValencia Ochoa, G.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. [CrossRef]spa
dcterms.referencesHabibi, H.; Zoghi, M.; Chitsaz, A.; Javaherdeh, K.; Ayazpour, M.; Bellos, E. Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy—exergy analysis. Sustain. Energy Technol. Assess. 2020, 39, 100699. [CrossRef]spa
dcterms.referencesJiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle. Appl. Energy 2018, 216, 634–648. [CrossRef]spa
dcterms.referencesYang, D.; Khan, T.S.; Al-Hajri, E.; Ayub, Z.H.; Ayub, A.H. Geometric optimization of shell and tube heat exchanger with interstitial twisted tapes outside the tubes applying CFD techniques. Appl. Therm. Eng. 2019, 152, 559–572. [CrossRef]spa
dcterms.referencesde la Torre, R.; François, J.-L.; Lin, C.-X. Assessment of the design effects on the structural performance of the Printed Circuit Heat Exchanger under very high temperature condition. Nucl. Eng. Des. 2020, 365, 110713. [CrossRef]spa
dcterms.referencesZhang, X.; Sun, X.; Christensen, R.; Anderson, M.; Carlson, M. Optimization of S-Shaped Fin Channels in a Printed Circuit Heat Exchanger for Supercritical CO2 Test Loop. In Proceedings of the 5th International Supercritical CO2 Power Cycles Symposium, San Antonio, TX, USA, 29–31 March 2016.spa
dcterms.referencesSaeed, M.; Kim, M.H. Thermal and hydraulic performance of SCO2 PCHE with different fin configurations. Appl. Therm. Eng. 2017, 127, 975–985. [CrossRef]spa
dcterms.referencesNgo, T.L.; Kato, Y.; Nikitin, K.; Ishizuka, T. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles. Exp. Therm. Fluid Sci. 2007, 32, 560–570. [CrossRef]spa
dcterms.referencesYoon, S.H.; No, H.C.; Kang, G.B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs. Nucl. Eng. Des. 2014, 270, 334–343. [CrossRef]spa
dcterms.referencesLiu, G.; Huang, Y.; Wang, J.; Liu, R. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems. Renew. Sustain. Energy Rev. 2020, 133, 110290. [CrossRef]spa
dcterms.referencesBone, V.; McNaughton, R.; Kearney, M.; Jahn, I. Methodology to develop off-design models of heat exchangers with non-ideal fluids. Appl. Therm. Eng. 2018, 145, 716–734. [CrossRef]spa
dcterms.referencesShin, C.W.; No, H.C. Experimental study for pressure drop and flow instability of two-phase flow in the PCHE-type steam generator for SMRs. Nucl. Eng. Des. 2017, 318, 109–118. [CrossRef]spa
dcterms.referencesChai, L.; Tassou, S.A. Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications. Energy Procedia 2019, 161, 480–488. [CrossRef]spa
dcterms.referencesPark, J.H.; Park, H.S.; Kwon, J.G.; Kim, T.H.; Kim, M.H. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy 2018, 160, 520–535. [CrossRef]spa
dcterms.referencesZhao, Z.; Zhang, X.; Zhao, K.; Jiang, P.; Chen, Y. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger. Appl. Therm. Eng. 2017, 126, 717–729. [CrossRef]spa
dcterms.referencesLi, X.L.; Tang, G.H.; Fan, Y.H.; Yang, D.L.; Wang, S.Q. Numerical analysis of slotted airfoil fins for printed circuit heat exchanger in SCO2 Brayton cycle. J. Nucl. Eng. Radiat. Sci. 2019, 5, 41303. [CrossRef]spa
dcterms.referencesWang, H.; Leung, L.K.H.; Wang, W.; Bi, Q. A review on recent heat transfer studies to supercritical pressure water in channels. Appl. Therm. Eng. 2018, 142, 573–596. [CrossRef]spa
dcterms.referencesJohn, J.; Pane, E.A.; Suyitno, B.M.; Rahayu, G.H.N.N.; Rhakasywi, D.; Suwandi, A. Computational fluid dynamics simulation of the turbulence models in the tested section on wind tunnel. Ain Shams Eng. J. 2020, 11, 1201–1209.spa
dcterms.referencesDjouimaa, S.; Messaoudi, L.; Giel, P.W. Transonic turbine blade loading calculations using different turbulence models—effects of reflecting and non-reflecting boundary conditions. Appl. Therm. Eng. 2007, 27, 779–787. [CrossRef]spa
dcterms.referencesLal, S.; Lucci, F.; Defraeye, T.; Poulikakos, L.D.; Partl, M.N.; Derome, D.; Carmeliet, J. CFD modeling of convective scalar transport in a macroporous material for drying applications. Int. J. Therm. Sci. 2018, 123, 86–98. [CrossRef]spa
dcterms.referencesJiao, Z.; Yuan, S.; Ji, C.; Mannan, M.S.; Wang, Q. Optimization of dilution ventilation layout design in confined environments using Computational Fluid Dynamics (CFD). J. Loss Prev. Process Ind. 2019, 60, 195–202. [CrossRef]spa
dcterms.referencesBennett, K.; Chen, Y. One-way coupled three-dimensional fluid-structure interaction analysis of zigzag-channel supercritical CO2 printed circuit heat exchangers. Nucl. Eng. Des. 2020, 358, 110434. [CrossRef]spa
dcterms.referencesGNU; Lesser General Public License (LGPL). Salome. Available online: https://www.salome-platform.org/ (accessed on 25 January 2023).spa
dcterms.referencesBai, J.; Pan, J.; He, X.; Wang, K.; Tang, L.; Yang, R. Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer. Appl. Therm. Eng. 2020, 175, 115379. [CrossRef]spa
dcterms.referencesSaeed, M.; Kim, M.-H. Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle. Energy Convers. Manag. 2019, 193, 124–139. [CrossRef]spa
dcterms.referencesThulukkanam, K. Heat Exchanger Design Handbook; CRC Press: Boca Raton, FL, USA, 2000.spa
dcterms.referencesAbeykoon, C. Compact heat exchangers—Design and optimization with CFD. Int. J. Heat Mass Transf. 2020, 146, 118766. [CrossRef]spa
dcterms.referencesKim, I.H.; Zhang, X.; Christensen, R.; Sun, X. Design study and cost assessment of straight, zigzag, S-shape, and OSF PCHEs for a FLiNaK—SCO2 Secondary Heat Exchanger in FHRs. Ann. Nucl. Energy 2016, 94, 129–137. [CrossRef]spa
dcterms.referencesYang, Y.; Li, H.; Yao, M.; Gao, W.; Zhang, Y.; Zhang, L. Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE. Int. J. Heat Mass Transf. 2019, 135, 33–43. [CrossRef]spa
dc.identifier.doihttps:// doi.org/10.3390/en16052326
dc.relation.citationedition16 (2023)spa
dc.relation.citationendpage24spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume16spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalCFDeng
dc.subject.proposalcost design analysiseng
dc.subject.proposalprinted circuit heat exchangereng
dc.subject.proposalthermal hydraulic performanceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
Excepto si se señala otra cosa, la licencia del ítem se describe como under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)