Show simple item record

dc.contributor.authorOrjuela Abril, Martha Sofia
dc.contributor.authorTorregroza Espinosa, Ana Carolina
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2024-04-01T16:51:27Z
dc.date.available2024-04-01T16:51:27Z
dc.date.issued2023-03-24
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6780
dc.description.abstractThis research studies the current state of the Colombian industrial sector, which is focused on self-generation processes. The study’s objective is to search for viable technological strategies that strengthen this particular sector’s competitiveness and sustainable development. The analysis shows that internal combustion engines represent 49% of the technologies used for self-generation. The main fuel used in the sector is natural gas, with a percentage of 56%. The lack of strategies for the use of residual heat and technological inefficiencies caused a loss of 36% in the energy used in the Colombian industrial sector. Thermoelectric generators are a feasible way to recover energy from exhaust gases in engines used for self-generation. Additionally, they allow a 4% reduction in fuel consumption and an improvement in the engine’s energy efficiency. The use of hydrogen as fuel allows a 30% reduction in polluting emissions, such as CO2 , CO, HC, and particulate matter. Hydrogen production processes, such as water electrolysis, allow the participation of Colombia’s solar energy potential, leading to sustainable hydrogen production, efficiency (60–80%), and a lower economic cost. In general, the application of thermoelectric generators and the use of hydrogen gas allow the improvement of the Colombian industrial sector’s environmental, social, and economic aspects due to greater competitiveness and the reduction in emissions and operating costs.eng
dc.format.extent21 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSustainability (Switzerland)spa
dc.relation.ispartofOrjuela-Abril, S.; Torregroza-Espinosa, A.; Duarte-Forero, J. Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry. Sustainability 2023, 15, 5720. https://doi.org/ 10.3390/su15075720
dc.rightsunder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2071-1050/15/7/5720spa
dc.titleInnovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industryeng
dc.typeArtículo de revistaspa
dcterms.referencesValencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends. Appl. Sci. 2020, 10, 907.spa
dcterms.referencesHuang, P.; Westman, L. China’s imaginary of ecological civilization: A resonance between the state-led discourse and sociocultural dynamics. Energy Res. Soc. Sci. 2021, 81, 102253. [CrossRef]spa
dcterms.referencesBendixen, M.; Iversen, L.L.; Best, J.; Franks, D.M.; Hackney, C.R.; Latrubesse, E.M.; Tusting, L.S. Sand, gravel, and UN Sustainable Development Goals: Conflicts, synergies, and pathways forward. One Earth 2021, 4, 1095–1111. [CrossRef]spa
dcterms.referencesRamirez, R.; Avila, E.; Lopez, L.; Bula, A.; Forero, J.D. CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps. Alex. Eng. J. 2020, 59, 291–309. [CrossRef]spa
dcterms.referencesForero, J.D.; Ochoa, G.V.; Alvarado, W.P. Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine. Lubricants 2020, 8, 97spa
dcterms.referencesChams, N.; García-Blandón, J. Sustainable or not sustainable? The role of the board of directors. J. Clean. Prod. 2019, 226, 1067–1081. [CrossRef]spa
dcterms.referencesNikolaou, I.E.; Tsalis, T.A.; Evangelinos, K.I. A framework to measure corporate sustainability performance: A strong sustainability-based view of firm. Sustain. Prod. Consum. 2019, 18, 1–18. [CrossRef]spa
dcterms.referencesBurton, I. Report on reports: Our common future: The world commission on environment and development. Environ. Sci. Policy Sustain. Dev. 1987, 29, 25–29. [CrossRef]spa
dcterms.referencesSilvestre, B.S. Sustainable supply chain management in emerging economies: Environmental turbulence, institutional voids and sustainability trajectories. Int. J. Prod. Econ. 2015, 167, 156–169. [CrossRef]spa
dcterms.referencesAlmeida, C.; Bonilla, S.H.; Giannetti, B.F.; Huisingh, D. Cleaner Production initiatives and challenges for a sustainable world: An introduction to this special volume. J. Clean. Prod. 2013, 47, 1–10. [CrossRef]spa
dcterms.referencesAfzal, A.; Soudagar, M.E.M.; Belhocine, A.; Kareemullah, M.; Hossain, N.; Alshahrani, S.; Saleel, C.A.; Subbiah, R.; Qureshi, F.; Mujtaba, M.A. Thermal performance of compression ignition engine using high content biodiesels: A comparative study with diesel fuel. Sustainability 2021, 13, 7688. [CrossRef]spa
dcterms.referencesMubashir, M.; Ashena, R.; Bokhari, A.; Mukhtar, A.; Saqib, S.; Ali, A.; Saidur, R.; Khoo, K.S.; Ng, H.S.; Karimi, F.; et al. Effect of process parameters over carbon-based ZIF-62 nano-rooted membrane for environmental pollutants separation. Chemosphere 2022, 291, 133006. [CrossRef] [PubMed]spa
dcterms.referencesYusuf, M.; Bazli, L.; Alam, M.A.; Masood, F.; Keong, L.K.; Noor, A.; Hellgardt, K.; Abdullah, B. Hydrogen production via natural gas reforming: A comparative study between DRM, SRM and BRM techniques. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change, Sakheer, Bahrain, 15–16 November 2021; pp. 155–158.spa
dcterms.referencesChu, W.; Vicidomini, M.; Calise, F.; Dui´c, N.; Østergaard, P.A.; Wang, Q.; da Graça Carvalho, M. Recent Advances in Technologies, Methods, and Economic Analysis for Sustainable Development of Energy, Water, and Environment Systems. Energies 2022, 15, 7129. [CrossRef]spa
dcterms.referencesKılkı¸s, ¸S.; Krajaˇci´c, G.; Dui´c, N.; Rosen, M.A.; Al-Nimr, M.A. Effective mitigation of climate change with sustainable development of energy, water and environment systems. Energy Convers. Manag. 2022, 269, 116146. [CrossRef]spa
dcterms.referencesOsman, A.I.; Hefny, M.; Maksoud, M.I.A.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [CrossRef]spa
dcterms.referencesQureshi, F.; Yusuf, M.; Pasha, A.A.; Khan, H.W.; Imteyaz, B.; Irshad, K. Sustainable and energy efficient hydrogen production via glycerol reforming techniques: A review. Int. J. Hydrogen Energy 2022, 47, 41397–41420. [CrossRef]spa
dcterms.referencesBashi, M.H.; De Tommasi, L.; Le Cam, A.; Relaño, L.S.; Lyons, P.; Mundó, J.; Pandelieva-Dimova, I.; Schapp, H.; Loth-Babut, K.; Egger, C.; et al. A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors. Renew. Sustain. Energy Rev. 2023, 172, 113055. [CrossRef]spa
dcterms.referencesYusuf, M.; Bazli, L.; Abdullah, B. Challenges and remediation for global warming to achieve sustainable development. In Artificial Intelligence for Renewable Energy Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 243–257.spa
dcterms.referencesJaysawal, R.K.; Chakraborty, S.; Elangovan, D.; Padmanaban, S. Concept of net zero energy buildings (NZEB)-A literature review. Clean. Eng. Technol. 2022, 11, 100582. [CrossRef]spa
dcterms.referencesAjanovic, A.; Haas, R. Economic prospects and policy framework for hydrogen as fuel in the transport sector. Energy Policy 2018, 123, 280–288. [CrossRef]spa
dcterms.referencesNicodemus, J.H. Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV. Energy Policy 2018, 120, 100–109. [CrossRef]spa
dcterms.referencesAbad, A.V.; Dodds, P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020, 138, 111300. [CrossRef]spa
dcterms.referencesEkeoma, B.C.; Yusuf, M.; Johari, K.; Abdullah, B. Mesoporous silica supported Ni-based catalysts for methane dry reforming: A review of recent studies. Int. J. Hydrogen Energy 2022, 47, 41596–41620. [CrossRef]spa
dcterms.referencesLi, G.; Liu, F.; Liu, T.; Yu, Z.; Liu, Z.; Fang, Y. Life cycle assessment of coal direct chemical looping hydrogen generation with Fe2O3 oxygen carrier. J. Clean. Prod. 2019, 239, 118118. [CrossRef]spa
dcterms.referencesMahmoudi, A.; Fazli, M.; Morad, M.R. A recent review of waste heat recovery by Organic Rankine Cycle. Appl. Therm. Eng. 2018, 143, 660–675. [CrossRef]spa
dcterms.referencesRajesh, R. Design analysis and fabrication of Innovative waste heat recovery System and its impact on emission Control in a compression Ignition engine. Ph.D. Thesis, Université Internationale de Rabat, Rabat, Morocco, 2020.spa
dcterms.referencesXu, B.; Rathod, D.; Yebi, A.; Filipi, Z.; Onori, S.; Hoffman, M. A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications. Renew. Sustain. Energy Rev. 2019, 107, 145–170. [CrossRef]spa
dcterms.referencesUnidad de Planeación Minero-Energética. Autogeneración y Cogeneración. Available online: https://www1.upme.gov.co/ Paginas/Autogeneración-y-Cogeneración.aspx (accessed on 7 December 2022).spa
dcterms.referencesIto, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [CrossRef]spa
dcterms.referencesKhzouz, M.; Gkanas, E.I.; Girella, A.; Statheros, T.; Milanese, C. Sustainable hydrogen production via LiH hydrolysis for unmanned air vehicle (UAV) applications. Int. J. Hydrogen Energy 2020, 45, 5384–5394. [CrossRef]spa
dcterms.referencesUnidad de Planeación Minero-Energética. Demanda y Eficiencia Energética. Available online: https://www1.upme.gov.co/ DemandayEficiencia/Paginas/Modelos-analiticos.aspx (accessed on 7 December 2022).spa
dcterms.referencesUnidad de Planeación Minero-Energética. Plan Energético Nacional 2020-2050, la Transformación Energética que Habilita el Desarrollo Sostenible. Available online: https://www1.upme.gov.co/DemandayEficiencia/Paginas/PEN.aspx (accessed on 7 December 2022).spa
dcterms.referencesHoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Sidik, N.A.C.; Azmi, W.H. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renew. Sustain. Energy Rev. 2017, 73, 307–331. [CrossRef]spa
dcterms.referencesMidilli, A.; Ay, M.; Dincer, I.; Rosen, M.A. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renew. Sustain. Energy Rev. 2005, 9, 255–271. [CrossRef]spa
dcterms.referencesda Silva Veras, T.; Mozer, T.S.; da Costa Rubim Messeder dos Santos, D.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energy 2017, 42, 2018–2033. [CrossRef]spa
dcterms.referencesYue, C.; Tong, L.; Zhang, S. Thermal and economic analysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle. Appl. Energy 2019, 248, 241–255. [CrossRef]spa
dcterms.referencesLion, S.; Vlaskos, I.; Taccani, R. A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Convers. Manag. 2020, 207, 112553. [CrossRef]spa
dcterms.referencesElkelawy, M.; El Shenawy, E.A.; Bastawissi, H.A.-E.; Shams, M.M.; Panchal, H. A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Convers. Manag. X 2022, 14, 100177. [CrossRef]spa
dcterms.referencesOlabi, A.G.; Wilberforce, T.; Abdelkareem, M.A. Fuel cell application in the automotive industry and future perspective. Energy 2021, 214, 118955. [CrossRef]spa
dcterms.referencesHuang, B.; Shen, Z.-G. Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery. Energy 2022, 246, 123375. [CrossRef]spa
dcterms.referencesHountalas, D.T.; Katsanos, C.O.; Kouremenos, D.A.; Rogdakis, E.D. Study of available exhaust gas heat recovery technologies for HD diesel engine applications. Int. J. Altern. Propuls. 2007, 1, 228–249. [CrossRef]spa
dcterms.referencesDuparchy, A.; Leduc, P.; Bourhis, G.; Ternel, C. Heat recovery for next generation of hybrid vehicles: Simulation and design of a Rankine cycle system. World Electr. Veh. J. 2009, 3, 440–456. [CrossRef]spa
dcterms.referencesRaju, G.; Kanidarapu, N.R. A review on efficiency improvement methods in organic Rankine cycle system: An exergy approach. Int. J. Adv. Appl. Sci. 2022, 11, 1–10. [CrossRef]spa
dcterms.referencesChintala, V.; Kumar, S.; Pandey, J.K. A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle. Renew. Sustain. Energy Rev. 2018, 81, 493–509. [CrossRef]spa
dcterms.referencesPatil, D.S.; Arakerimath, R.R.; Walke, P. V Thermoelectric materials and heat exchangers for power generation—A review. Renew. Sustain. Energy Rev. 2018, 95, 1–22. [CrossRef]spa
dcterms.referencesQasim, M.A.; Velkin, V.I.; Shcheklein, S.E. Development of a Computational Fluid Dynamics (CFD) Numerical Approach of Thermoelectric Module for Power Generation. Crystals 2022, 12, 828. [CrossRef]spa
dcterms.referencesGe, M.; Li, Z.; Zhao, Y.; Xuan, Z.; Li, Y.; Zhao, Y. Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery. Appl. Energy 2022, 322, 119523. [CrossRef]spa
dcterms.referencesHamad, T.A.; Agll, A.A.; Hamad, Y.M.; Bapat, S.; Thomas, M.; Martin, K.B.; Sheffield, J.W. Hydrogen recovery, cleaning, compression, storage, dispensing, distribution system and end-uses on the university campus from combined heat, hydrogen and power system. Int. J. Hydrogen Energy 2014, 39, 647–653. [CrossRef]spa
dcterms.referencesKaur, M.; Pal, K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. J. Energy Storage 2019, 23, 234–249. [CrossRef]spa
dcterms.referencesNikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [CrossRef]spa
dcterms.referencesGermscheidt, R.L.; Moreira, D.E.B.; Yoshimura, R.G.; Gasbarro, N.P.; Datti, E.; dos Santos, P.L.; Bonacin, J.A. Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Adv. Energy Sustain. Res. 2021, 2, 2100093. [CrossRef]spa
dcterms.referencesZhao, K.; Zhang, R.; Gao, Y.; Lin, Y.; Liu, A.; Wang, X.; Zheng, A.; Huang, Z.; Zhao, Z. High syngas selectivity and near pure hydrogen production in perovskite oxygen carriers for chemical looping steam methane reforming. Fuel Process. Technol. 2022, 236, 107398. [CrossRef]spa
dcterms.referencesSarafraz, M.M.; Christo, F.C. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification. Energy Convers. Manag. 2020, 225, 113428. [CrossRef] [PubMed]spa
dcterms.referencesMansur, F.Z.; Faizal, C.K.M.; Monir, M.U.; Samad, N.A.F.A.; Atnaw, S.M.; Sulaiman, S.A. Co-gasification between coal/sawdust and coal/wood pellet: A parametric study using response surface methodology. Int. J. Hydrogen Energy 2020, 45, 15963–15976. [CrossRef]spa
dcterms.referencesLi, J.; Cheng, W. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. Int. J. Hydrogen Energy 2020, 45, 27979–27993. [CrossRef]spa
dcterms.referencesAyers, K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Curr. Opin. Chem. Eng. 2021, 33, 100719. [CrossRef]spa
dcterms.referencesGopinath, M.; Marimuthu, R. A review on solar energy-based indirect water-splitting methods for hydrogen generation. Int. J. Hydrogen Energy 2022, 47, 37742–37759. [CrossRef]spa
dcterms.referencesThangaraja, J.; Kannan, C. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels—A review. Appl. Energy 2016, 180, 169–184. [CrossRef]spa
dcterms.referencesSaidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 2012, 16, 5649–5659. [CrossRef]spa
dcterms.referencesLeng, L.; Ma, Z.; Cheng, J.; Shi, L.; Deng, K. Research on exhaust energy distribution regulation for fuel economy improvement of turbocompound diesel engine. Appl. Therm. Eng. 2023, 220, 119708. [CrossRef]spa
dcterms.referencesSalek, F.; Babaie, M.; Ghodsi, A.; Hosseini, S.V.; Zare, A. Energy and exergy analysis of a novel turbo-compounding system for supercharging and mild hybridization of a gasoline engine. J. Therm. Anal. Calorim. 2021, 145, 817–828. [CrossRef]spa
dcterms.referencesAndwari, A.M.; Pesyridis, A.; Esfahanian, V.; Salavati-Zadeh, A.; Hajialimohammadi, A. Modelling and evaluation of waste heat recovery systems in the case of a heavy-duty diesel engine. Energies 2019, 12, 1397. [CrossRef]spa
dcterms.referencesLiu, X.; Nguyen, M.Q.; Chu, J.; Lan, T.; He, M. A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. J. Clean. Prod. 2020, 265, 121502. [CrossRef]spa
dcterms.referencesThaddaeus, J.; Unachukwu, G.O.; Mgbemene, C.A.; Pesyridis, A.; Usman, M.; Alshammari, F.A. Design, size estimation, and thermodynamic analysis of a realizable organic Rankine cycle system for waste heat recovery in commercial truck engines. Therm. Sci. Eng. Prog. 2021, 22, 100849. [CrossRef]spa
dcterms.referencesVarshil, P.; Deshmukh, D. A comprehensive review of waste heat recovery from a diesel engine using organic rankine cycle. Energy Rep. 2021, 7, 3951–3970.spa
dcterms.referencesLan, S.; Yang, Z.; Stobart, R.; Chen, R. Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications. Appl. Energy 2018, 231, 68–79. [CrossRef]spa
dcterms.referencesChoi, Y.; Negash, A.; Kim, T.Y. Waste heat recovery of diesel engine using porous medium-assisted thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 2019, 197, 111902. [CrossRef]spa
dcterms.referencesBurnete, N.V.; Mariasiu, F.; Depcik, C.; Barabas, I.; Moldovanu, D. Review of thermoelectric generation for internal combustion engine waste heat recovery. Prog. Energy Combust. Sci. 2022, 91, 101009. [CrossRef]spa
dcterms.referencesKumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [CrossRef]spa
dcterms.referencesMohamed, E.S. Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions. Appl. Therm. Eng. 2019, 147, 661–674. [CrossRef]spa
dcterms.referencesComamala, M.; Massaguer, A.; Massaguer, E.; Pujol, T. Validation of a fuel economy prediction method based on thermoelectric energy recovery for mid-size vehicles. Appl. Therm. Eng. 2019, 153, 768–778. [CrossRef]spa
dcterms.referencesHe, M.; Wang, E.; Zhang, Y.; Zhang, W.; Zhang, F.; Zhao, C. Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine. Appl. Energy 2020, 274, 115298–115315. [CrossRef]spa
dcterms.referencesRaut, P.; Vohra, M. Experimental investigation and comparative analysis of selected thermoelectric generators operating with automotive waste heat recovery module. Mater. Today Proc. 2021, 50, 994–998. [CrossRef]spa
dcterms.referencesFini, A.T.; Hashemi, S.A.; Fattahi, A. On the efficient topology of the exhaust heat exchangers equipped with thermoelectric generators for an internal combustion engine. Energy Convers. Manag. 2022, 268, 115966. [CrossRef]spa
dcterms.referencesGürbüz, H.; Akçay, H.; Topalcı, Ü. Experimental investigation of a novel thermoelectric generator design for exhaust waste heat recovery in a gas-fueled SI engine. Appl. Therm. Eng. 2022, 216, 119122. [CrossRef]spa
dcterms.referencesAljaghtham, M.; Celik, E. Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines. Energy 2020, 200, 117547. [CrossRef]spa
dcterms.referencesTutak, W.; Jamrozik, A.; Grab-Rogali ´nski, K. Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen Energy 2020, 45, 9088–9097. [CrossRef]spa
dcterms.referencesRahimi, H.M.; Jazayeri, S.A.; Ebrahimi, M. Hydrogen energy share enhancement in a heavy duty diesel engine under RCCI combustion fueled with natural gas and diesel oil. Int. J. Hydrogen Energy 2020, 45, 17975–17991. [CrossRef]spa
dcterms.referencesZareei, J.; Haseeb, M.; Ghadamkheir, K.; Farkhondeh, S.A.; Yazdani, A.; Ershov, K. The effect of hydrogen addition to compressed natural gas on performance and emissions of a DI diesel engine by a numerical study. Int. J. Hydrogen Energy 2020, 45, 34241–34253. [CrossRef]spa
dcterms.referencesNag, S.; Sharma, P.; Gupta, A.; Dhar, A. Experimental study of engine performance and emissions for hydrogen diesel dual fuel engine with exhaust gas recirculation. Int. J. Hydrogen Energy 2019, 44, 12163–12175. [CrossRef]spa
dcterms.referencesYilmaz, I.T. The effect of hydrogen on the thermal efficiency and combustion process of the low compression ratio CI engine. Appl. Therm. Eng. 2021, 197, 117381. [CrossRef]spa
dcterms.referencesFrantzis, C.; Zannis, T.; Savva, P.G.; Yfantis, E.A. A Review on Experimental Studies Investigating the Effect of Hydrogen Supplementation in CI Diesel Engines—The case of HYMAR. Energies 2022, 15, 5709. [CrossRef]spa
dcterms.referencesShi, C.; Chai, S.; Di, L.; Ji, C.; Ge, Y.; Wang, H. Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to Wankel engine. Energy 2023, 263, 125896. [CrossRef]spa
dcterms.referencesSeelam, N.; Gugulothu, S.K.; Reddy, R.V.; Bhasker, B.; Panda, J.K. Exploration of engine characteristics in a CRDI diesel engine enriched with hydrogen in dual fuel mode using toroidal combustion chamber. Int. J. Hydrogen Energy 2022, 47, 13157–13167. [CrossRef]spa
dcterms.referencesChampier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [CrossRef]spa
dcterms.referencesUnited Nations. Department of Economic and Social Affairs: Sustainable Development. Available online: https://sdgs.un.org/ goals (accessed on 10 December 2022).spa
dc.identifier.doihttps://doi.org/ 10.3390/su15075720
dc.relation.citationedition15 (2023)spa
dc.relation.citationendpage21spa
dc.relation.citationissue15 (2023)spa
dc.relation.citationstartpage1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalwaste heat recoveryeng
dc.subject.proposalhydrogen productioneng
dc.subject.proposalsustainabilityeng
dc.subject.proposalenergyeng
dc.subject.proposalengineeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).