Show simple item record

dc.contributor.authorParada Rozo, Diego Andres
dc.contributor.authorRego, Cassio
dc.contributor.authorGuevara-Ibarra, Dinael
dc.contributor.authorNavarro, Andres
dc.contributor.authorRamos, Glaucio
dc.contributor.authorOliveira, Rodrigo
dc.date.accessioned2024-03-22T15:05:09Z
dc.date.available2024-03-22T15:05:09Z
dc.date.issued2023-06
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6761
dc.description.abstractThis paper presents a radiopropagation algorithm based on a Ray Tracing (RT) technique that combines a modified multipath model for constant refractivity gradient profiles and the Uniform Theory of Diffraction (UTD). A novel formulation is proposed by the authors for calculation and ground-reflection analysis of ray paths depending on atmospheric refractivity. The algorithm introduced herein was evaluated in a mixed scenario and in two more realistic case studies, under conditions of constant refractivity gradient and lossy terrain profiles. Pathloss results are obtained and compared with Parabolic Equation (PE) numerical solution results at 2.0 GHz, 3.5 GHz and 5.4 GHz. In such conditions, the modified radiopropagation multipath algorithm with atmospheric refractivity introduced herein showed satisfactory results.eng
dc.format.extent15 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Microwaves, Optoelectronics and Electromagnetic Applicationsspa
dc.relation.ispartofD. Parada, C. G. Rego, D. Guevara, A. Navarro, G. L. Ramos,R. Oliveira. A Modified Radiopropagation Multipath Model for Constant Refractivity Gradient Profiles. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. junio de 2023;
dc.rights© 2023 SBMO/SBMageng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://doaj.org/article/c90351c7108e44d48dcbf18dc38896daspa
dc.titleA Modified Radiopropagation Multipath Model for Constant Refractivity Gradient Profileseng
dc.typeArtículo de revistaspa
dcterms.referencesT. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5G) wireless networks — With a focus on propagation models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.spa
dcterms.referencesA. Navarro, D. Guevara, D. Escalante, W. Cruz, J. Gómez, N. Cardona, and J. Gimenez, “Delay spread in mmwave bands for indoor using game engines 3D ray based tools,” in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2016.spa
dcterms.referencesN. R. Leonor, S. Faria, G. Ramos, P. V. G. Castellanos, C. Rodríguez, L. da Silva Mello, and R. F. S. Caldeirinha, “Sitespecific radio propagation model for macrocell coverage at sub-6 GHz frequencies,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9706–9715, 2022spa
dcterms.referencesG. Apaydin and L. Sevgi, Radio Wave Propagation and Parabolic Equation Modeling. John Wiley & Sons, 2017.spa
dcterms.referencesA. Navarro, D. Guevara, and J. Gómez, “A proposal to improve ray launching techniques,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 143–146, 2019.spa
dcterms.referencesI. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and P. Shirley, “State of the art in ray tracing animated scenes,” in Computer graphics forum, vol. 28, no. 6, pp. 1691–1722, 2009.spa
dcterms.referencesP. Y. Ufimtsev, Fundamentals of the Physical Theory of Diffraction. John Wiley & Sons, 2014.spa
dcterms.referencesA. Karimian, C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, “Refractivity estimation from sea clutter: An invited review,” Radio science, vol. 46, no. 06, pp. 1–16, 2011.spa
dcterms.referencesS. Wang, T. H. Lim, Y. J. Chong, J. Ko, Y. B. Park, and H. Choo, “Estimation of abnormal wave propagation by a novel duct map based on the average normalized path loss,” Microwave and Optical Technology Letters, vol. 62, no. 4, pp. 1662–1670, 2020.spa
dcterms.references] P. Valtr and P. Pechac, “Tropospheric refraction modeling using ray-tracing and parabolic equation,” Radioengineering, vol. 14, no. 4, pp. 98–104, 2005.spa
dcterms.references——, “Analytic tropospheric ray-tracing model for constant refractivity gradient profiles,” in 2006 First European Conference on Antennas and Propagation, pp. 1–4, 2006.spa
dcterms.references——, “The influence of horizontally variable refractive index height profile on radio horizon range,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 489–491, 2005.spa
dcterms.referencesP. Zhang, L. Bai, Z. Wu, and L. Guo, “Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones.” IEEE Antennas and Propagation Magazine, vol. 58, no. 3, pp. 31–44, 2016.spa
dcterms.referencesO. Ozgun, G. Apaydin, M. Kuzuoglu, and L. Sevgi, “PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain,” Computer Physics Communications, vol. 182, no. 12, pp. 2638–2654, 2011.spa
dcterms.referencesA. Navarro, D. Parada, D. Guevara, C. G. Rego, and R. A. Badillo, “Modified two-ray model with UTD and atmospheric effects,” in 2020 14th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2020.spa
dcterms.referencesM. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation. IET, 2000, no. 45.spa
dcterms.referencesA. Navarro, D. Parada, D. Guevara, C. G. Rego, R. Oliveira, R. Velásquez, and L. Gomezjurado, “A modified tworay model with UTD and atmospheric effects: Analysis of reflected ray Over sloping terrain,” in 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, 2021spa
dcterms.referencesD. Tami, C. G. Rego, D. Guevara, A. Navarro, F. J. Moreira, J. Giménez, and H. G. Triana, “Analysis of heuristic uniform theory of diffraction coefficients for electromagnetic scattering prediction,” International Journal of Antennas and Propagation, vol. 2018, pp. 1–11, 2018.spa
dcterms.referencesR. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proceedings of the IEEE, vol. 62, no. 11, pp. 1448–1461, 1974.spa
dcterms.referencesR. Luebbers, “A heuristic UTD slope diffraction coefficient for rough lossy wedges,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 2, pp. 206–211, 1989.spa
dcterms.referencesF. Akleman and L. Sevgi, “A novel finite-difference time-domain wave propagator,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 5, pp. 839–841, 2000.spa
dcterms.referencesP. Zhang, L. Bai, Z. Wu, and L. Guo, “Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones,” IEEE Antennas and Propagation Magazine, vol. 58, no. 3, pp. 31–44, 2016.spa
dc.identifier.doihttp://dx.doi.org/10.1590/2179-10742023v22i2272846
dc.relation.citationeditionVol.22 N°.2 (2023)spa
dc.relation.citationendpage312spa
dc.relation.citationissue2 (2023)spa
dc.relation.citationstartpage298spa
dc.relation.citationvolume22spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalAtmospheric refractivityeng
dc.subject.proposalmultipath modeleng
dc.subject.proposalUTDeng
dc.subject.proposalPE numerical solutioneng
dc.subject.proposalRT techniqueseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 SBMO/SBMag
Except where otherwise noted, this item's license is described as © 2023 SBMO/SBMag