Mostrar el registro sencillo del ítem


Tratamiento de lixiviados mediante fotocatálisis heterogénea TiO2/UV: un modelo de regresión polinomial múltiple

dc.contributor.authorBecerra Moreno, Dorance
dc.contributor.authorMachuca-Martínez, Fiderman
dc.contributor.authorMaturana Cordoba, Aymer Yeferson
dc.contributor.authorVillamizar, Salvador
dc.contributor.authorSOTO VERJEL, JOSEPH WBEIMAR
dc.contributor.authorSoto Vergel, Angelo Joseph
dc.date.accessioned2024-03-21T14:57:09Z
dc.date.available2024-03-21T14:57:09Z
dc.date.issued2023-12-13
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6746
dc.description.abstractAdvanced oxidation processes such as TiO2/UV heterogeneous photocatalysis are suitable treatment methods for wastewater with high pollutant loads such as landfill leachates. Optimizing the variables that influence the process is a fundamental aspect. However, in this regard, experimental conditions are limited in terms of resources and time, which is why modeling allows obtaining a general understanding of the phenomenon from a set of experimental data. This work sought to model the photocatalytic process via multivariate polynomial regression, considering variables such as the catalyst concentration, the pH level, and the accumulated energy concerning the percentage of degradation in terms of dissolved organic carbon (DOC). The implemented fitting method resulted in a third-degree polynomial with an R2 of 0,8652, concluding that the model and its conclusions are valid. Moreover, with greater degrees, the model curve overfitted, even with better R2. DOC abatement showed a negative correlation with pH and the catalyst dose, while an opposite trend was observed for the accumulated energy. The model predictions allow inferring that, at low catalyst doses and medium and high pH levels, it is possible to find maximum degradations at low cumulative energieseng
dc.description.abstractLos procesos de oxidación avanzada como la fotocatálisis heterogénea TiO2/UV son métodos de tratamiento adecuados para aguas residuales con altas cargas contaminantes como los lixiviados de rellenos sanitarios. La optimización de las variables que influyen en el proceso es un aspecto fundamental. Sin embargo, en este aspecto, las condiciones experimentales son limitadas en términos de recursos y tiempo, por lo que el modelado permite obtener una comprensión general del fenómeno a partir de un conjunto de datos experimentales. Este trabajo pretendió modelar el proceso fotocatalítico mediante regresión polinómica multivariada, teniendo en cuenta variables como la concentración del catalizador, el nivel de pH y la energía acumulada en relación con el porcentaje de degradación en términos de carbón orgánico disuelto (DOC). El método de ajuste implementado dio como resultado un polinomio de grado 3 con un R2 de 0,8652, concluyendo que el modelo y sus conclusiones son válidos. Además, a mayor grado, la curva del modelo se sobreajustó, incluso con mejor R2. La remoción de DOC mostró una correlación negativa con el pH y la dosis de catalizador, y se observó una tendencia opuesta para la energía acumulada. Finalmente, las predicciones del modelo permiten inferir que, a dosis bajas del catalizador y niveles medios y altos de pH, es posible encontrar degradaciones máximas con bajas energías acumuladasspa
dc.format.extent10 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIngeniería e Investigaciónspa
dc.relation.ispartofD. Becerra Moreno, F. Machuca-Martínez, A. Maturana, S. E. Villamizar Mosquera, J. W. Soto Verjel, and Ángelo J. Soto Vergel, “Leachate Treatment via TiO2/UV Heterogeneous Photocatalysis: A Multiple Polynomial Regression Model”, Ing. Inv., vol. 43, no. 3, p. e101497, Aug. 2023.
dc.rightsEsta obra está bajo una licencia Creative Commons Attribution 4.0 International .eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://revistas.unal.edu.co/index.php/ingeinv/article/view/101497spa
dc.titleLeachate Treatment via TiO2/UV Heterogeneous Photocatalysis: A Multiple Polynomial Regression Modeleng
dc.titleTratamiento de lixiviados mediante fotocatálisis heterogénea TiO2/UV: un modelo de regresión polinomial múltiplespa
dc.typeArtículo de revistaspa
dcterms.referencesAcosta-Herazo, R., Mueses, M. Á., Puma, G. L., and Machu-ca-Martínez, F. (2019). Impact of photocatalyst optical properties on the efficiency of solar photocatalytic reac-tors rationalized by the concepts of initial rate of photon absorption (IRPA) dimensionless boundary layer of photon absorption and apparent optical thickness. Chemical Engi-neering Journal, 356, 839-849.spa
dcterms.referencesAkter, S., Islam, M. S., Kabir, M. H., Shaikh, M. A. A., and Ga-fur, M. A. (2022). UV/TiO2 photodegradation of metroni-dazole, ciprofloxacin and sulfamethoxazole in aqueous so-lution: An optimization and kinetic study. Arabian Journal of Chemistry, 15(7), 103900.https://doi.org/10.1016/j.jece.2019.103248spa
dcterms.referencesAl-Mamun, M.R., Kader, S., Islam, M. S., and Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248.spa
dcterms.referencesAl-Mamun, M. R., Kader, S., and Islam, M. S. (2021). Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environmental Nanotechnology, Monitoring & Management, 16, 100514. https://doi.org/10.1016/j.enmm.2021.100514spa
dcterms.referencesAmigh, P., and Mokhtarani, N. (2022). Leachate post treatment, using Ag-TiO2 nanoparticles immobilized on rotating vanes. Journal of Water Process Engineering, 47, 102842. https://doi.org/10.1016/j.jwpe.2022.102842spa
dcterms.referencesAteia, M., Alalm, M. G., Awfa, D., Johnson, M. S., and Yoshimura, C. (2020). Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review. Science of The Total Environment, 698, 134197. https://doi.org/10.1016/j.scitotenv.2019.134197spa
dcterms.referencesAzadi, S., Karimi-Jashni, A., and Javadpour, S. (2018). Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: Application of artificial neural network and genetic algorithm. Process Safety and Environmental Protection, 117, 267–277. https://doi.org/10.1016/j.psep.2018.03.038spa
dcterms.referencesBalarabe, B. Y., and Maity, P. (2022). Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655, 130247. https://doi.org/10.1016/j.colsurfa.2022.130247spa
dcterms.referencesBecerra, D., Soto, J., Villamizar, S., Machuca-Martínez, F., and Ramírez, L. (2020). Alternative for the treatment of leachates generated in a landfill of Norte de Santander – Colombia, by Means of the coupling of a photocatalytic and biological aerobic process. Topics in Catalysis, 63, 1336-1349. https://doi.org/10.1007/s11244-020-01284-1spa
dcterms.referencesBerberidou, C., Kitsiou, V., Lambropoulou, D. A., Antoniadis, Α., Ntonou, E., Zalidis, G. C., and Poulios, I. (2017). Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environmental Management, 195, 133-139. https://doi.org/10.1016/j.jenvman.2016.06.010spa
dcterms.referencesBorges, M. E., Sierra, M., Cuevas, E., García, R. D., and Esparza, P. (2016). Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy, 135, 527-535. https://doi.org/10.1016/j.solener.2016.06.022spa
dcterms.referencesCecen, A. (2021). Multivariate polynomial regression - File exchange - MATLAB central. https://github.com/ahmetcecen/MultiPolyRegress-MatlabCentralspa
dcterms.referencesChaturvedi, H., and Kaushal, P. (2018). Comparative study of different Biological Processes for non-segregated Municipal Solid Waste (MSW) leachate treatment. Environmental Technology and Innovation, 9, 134–139. https://doi.org/10.1016/j.eti.2017.11.008spa
dcterms.referencesChicco, D., Warrens, M. J., and Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623spa
dcterms.referencesÇifçi, D. I., and Meriç, S. (2015). Optimization of suspended photocatalytic treatment of two biologically treated textile effluents using TiO2 and ZnO catalysts. Global Nest Journal, 17(4), 653–663. https://doi.org/10.30955/GNJ.001715spa
dcterms.referencesCiresan, D. C., Meier, U., and Schmidhuber, J. (2012, June 10-15). Transfer learning for Latin and Chinese characters with Deep Neural Networks [Conference presentation]. 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia. https://doi.org/10.1109/IJCNN.2012.6252544spa
dcterms.referencesColombo, R., Ferreira, T. C. R., Alves, S. A., Carneiro, R. L., and Lanza, M. R. V. (2013). Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction. Journal of Environmental Management, 118, 32–39. https://doi.org/10.1016/j.jenvman.2012.12.035spa
dcterms.referencesFlorea, O. A. (2019). Mathematical modeling of some physical phenomena through dynamical systems. In C. Flaut, Š. Hošková-Mayerová, and D. Flaut (Eds.), Models and Theories in Social Systems. Studies in Systems, Decision and Control (vol. 179, pp. 77-93). https://doi.org/10.1007/978-3-030-00084-4_4spa
dcterms.referencesFrost, J. (2020). Introduction to statistics: An intuitive guide for analyzing data and unlocking discoveries. Statistics By Jim Publishing.spa
dcterms.referencesGout, E., Monnot, M., Boutin, O., Vanloot, P., Claeys-Bruno, M., and Moulin, P. (2022). Assessment and optimization of wet air oxidation for treatment of landfill leachate concentrated with reverse osmosis. Process Safety and Environmental Protection, 162, 765-774. https://doi.org/10.1016/j.psep.2022.04.046spa
dcterms.referencesHasan Khan Neon, M., and Islam, M. S. (2019). MoO3 and Ag co-synthesized TiO2 as a novel heterogeneous photocatalyst with enhanced visible-light-driven photocatalytic activity for methyl orange dye degradation. Environmental Nanotechnology, Monitoring & Management, 12, 100244. https://doi.org/10.1016/j.enmm.2019.100244spa
dcterms.referencesHassan, M., Wang, X., Wang, F., Wu, D., Hussain, A., and Xie, B. (2017). Coupling ARB-based biological and photochemical (UV/TiO 2 and UV/S 2 O 8 2− ) techniques to deal with sanitary landfill leachate. Waste Management, 63, 292-298. https://doi.org/10.1016/j.wasman.2016.09.003spa
dcterms.referencesHassan, M., Zhao, Y., and Xie, B. (2016). Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. Chemical Engineering Journal, 285, 264-275. https://doi.org/10.1016/j.cej.2015.09.093spa
dcterms.referencesJia, C.-Z., Zhu, J.-Q., and Qin, Q.-Y. (2013, January 16-18). Variation characteristics of different fractions of dissolved organic matter in landfill leachate during UV-TiO2 photocatalytic degradation [Conference presentation]. 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China. https://doi.org/10.1109/ISDEA.2012.383spa
dcterms.referencesJing, L., Chen, B., Wen, D., Zheng, J., and Zhang, B. (2017). Pilot-scale treatment of atrazine production wastewater by UV/O3 /ultrasound: Factor effects and system optimization. Journal of Environmental Management, 203, 182-190. https://doi.org/10.1016/j.jenvman.2017.07.027spa
dcterms.referencesMarien, C. B. D., Le Pivert, M., Azaïs, A., M’Bra, I. C., Drogui, P., Dirany, A., and Robert, D. (2019). Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs. UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, 370, 164-171. https://doi.org/10.1016/j.jhazmat.2018.06.009spa
dcterms.referencesMoura, L., and Picão, R. C. (2022). Removal of antimicrobial resistance determinants from wastewater: A risk perspective on conventional and emerging technologies. In H. Sarma, D. C. Domínguez, and W.-Y. Lee (Eds.), Emerging Contaminants in the Environment (pp. 603-642). Elsevier. https://doi.org/10.1016/B978-0-323-85160-2.00023-8spa
dcterms.referencesMüller, G. T., Giacobbo, A., dos Santos Chiaramonte, E. A., Rodrigues, M. A. S., Meneguzzi, A., and Bernardes, A. M. (2015). The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Management, 36, 177-183. https://doi.org/10.1016/j.wasman.2014.10.024spa
dcterms.referencesNomura, Y., Fukahori, S., and Fujiwara, T. (2020). Removal of 1,4-dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets. Journal of Hazardous Materials, 383, 121005. https://doi.org/10.1016/j.jhazmat.2019.121005spa
dcterms.referencesNugraha, J., and Fatimah, I. (2016). Modeling of photocatalytic activity of ZnO/AC by using linear probability model, logit and complementary log transformation. Procedia Engineering, 148, 1112-1120. https://doi.org/10.1016/j.proeng.2016.06.613spa
dcterms.referencesOhtani, B., Prieto-Mahaney, O. O., Li, D., and Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216(2-3), 179-182. https://doi.org/10.1016/j.jphotochem.2010.07.024spa
dcterms.referencesOller, I., Malato, S., and Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination – A review. https://doi.org/10.1016/j.scitotenv.2010.08.061spa
dcterms.referencesPawlowski, L. (1994). Standard methods for the examination of water and wastewater, 18th edition: Arnold E. Greenberd, Lenore S. Clesceri, Andrew D. Eaton (Editors) Water Environment Federation, Alexandria, USA, 1992; 1025 pp; US$120 (Hardcover); ISBN 0-87553-207-1. Science of The Total Environment, 142(3), 227-228. https://doi.org/10.1016/0048-9697(94)90332-8spa
dcterms.referencesPaździor, K., Bilińska, L., and Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, 120597. https://doi.org/10.1016/j.cej.2018.12.057spa
dcterms.referencesRizzo, L., Della Sala, A., Fiorentino, A., and Li Puma, G. (2014). Disinfection of urban wastewater by solar driven and UV lamp – TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Research, 53, 145-152. https://doi.org/10.1016/j.watres.2014.01.020spa
dcterms.referencesRocha, E. M. R., Vilar, V. J. P., Fonseca, A., Saraiva, I., and Boaventura, R. A. R. (2011). Landfill leachate treatment by solar-driven AOPs. Solar Energy, 85(1), 46-56. https://doi.org/10.1016/J.SOLENER.2010.11.001spa
dcterms.referencesRuiz-Delgado, A., Plaza-Bolaños, P., Oller, I., Malato, S., and Agüera, A. (2020). Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal. Journal of Hazardous Materials, 384, 121372. https://doi.org/10.1016/j.jhazmat.2019.121372spa
dcterms.referencesSatuf, M. L., Brandi, R. J., Cassano, A. E., and Alfano, O. M. (2005). Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Industrial & Engineering Chemistry Research, 44(17), 6643-6649. https://doi.org/10.1021/ie050365yspa
dcterms.referencesThanekar, P., Murugesan, P., and Gogate, P. R. (2018). Improvement in biological oxidation process for the removal of dichlorvos from aqueous solutions using pretreatment based on Hydrodynamic Cavitation. Journal of Water Process Engineering, 23, 20-26. https://doi.org/10.1016/j.jwpe.2018.03.004spa
dcterms.referencesVahabian, M., Hassanzadeh, Y., and Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environmental Monitoring and Assessment, 191, 109. https://doi.org/10.1007/s10661-019-7215-8spa
dcterms.referencesVillamizar, S., Maturana Cordoba, A., and Soto, J. (2022). Leachate decontamination through biological processes coupled to advanced oxidation: A review. Journal of the Air & Waste Management Association, 72(12), 1341-1365. https://doi.org/10.1080/10962247.2021.1985012spa
dcterms.referencesXu, B., Ahmed, M. B., Zhou, J. L., and Altaee, A. (2020). Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere, 243, 125366. https://doi.org/10.1016/j.chemosphere.2019.125366spa
dcterms.referencesYashni, G., Al-Gheethi, A., Radin Mohamed, R. M. S., Dai-Viet, N. V., Al-Kahtani, A. A., Al-Sahari, M., Nor Hazhar, N. J., Noman, E., and Alkhadher, S. (2021). Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: Optimization, mechanisms, techno-economic analysis. Chemosphere, 281, 130661. https://doi.org/10.1016/j.chemosphere.2021.130661spa
dcterms.referencesYasmin, C., Lobna, E., Mouna, M., Kais, D., Mariam, K., Rached, S., Abdelwaheb, C., and Ismail, T. (2020). New trend of Jebel Chakir landfill leachate pre-treatment by photocatalytic TiO2/Ag nanocomposite prior to fermentation using Candida tropicalis strain. International Biodeterioration & Biodegradation, 146, 104829. https://doi.org/10.1016/j.ibiod.2019.104829spa
dc.identifier.doihttps://doi.org/10.15446/ing.investig.101497
dc.identifier.doihttps://doi.org/10.15446/ing.investig.101497
dc.publisher.placeBogotá,Colombiaspa
dc.relation.citationeditionVol.43 N° 3. (2023)spa
dc.relation.citationendpage10spa
dc.relation.citationissue3 (2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume43spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalLixiviadoeng
dc.subject.proposalTiO2eng
dc.subject.proposalfotocatálisis heterogéneaeng
dc.subject.proposalmodelospa
dc.subject.proposalregresión polinómicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Esta obra está bajo una licencia Creative Commons Attribution 4.0 International .
Excepto si se señala otra cosa, la licencia del ítem se describe como Esta obra está bajo una licencia Creative Commons Attribution 4.0 International .