Mostrar el registro sencillo del ítem
Energy and exergetic performance analysis of a hybrid solar multi-stage Brayton cycle with different working fluids
dc.contributor.author | Moreno Gamboa, Faustino | |
dc.contributor.author | Nieto-Londoño, César | |
dc.date.accessioned | 2024-03-20T15:01:48Z | |
dc.date.available | 2024-03-20T15:01:48Z | |
dc.date.issued | 2023-08-10 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6741 | |
dc.description.abstract | An energy and exergy model for a hybrid multi-stage Brayton cycle solar thermal plant is presented, incorporating an arbitrary number of compression stages with intermediate cooling and expansion with reheating. In hybrid operation, the cycle receives thermal energy from a solar concentration system of a heliostat field and a central tower complemented by reheaters and an external main combustion chamber of natural gas. The proposed model considers the irreversibility of the plant’s components, and direct solar radiation is estimated with the Daily Integration Approach model. The model is validated and implemented with the Solugas experimental plant parameters and is applied in Barranquilla, Colombia. Additionally, this work presents a comparative analysis of different plant configurations using air, carbon dioxide and helium as working fluids. Comparing the power, the energetic and exergetic efficiencies, and the destruction of exergy on an average day of the year, the maximum points of these variables are also found as a function of the pressure ratio. Observing that the twocompression-one-expansion CO2 cycle presents maximum fuel conversion rates and the slightest destruction of total exergy. | eng |
dc.format.extent | 14 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | International Journal of Thermofluids | spa |
dc.relation.ispartof | Moreno-Gamboa F, Nieto-Londoño C. Energy and exergetic performance analysis of a hybrid solar multi-stage Brayton cycle with different working fluids. International Journal of Thermofluids [Internet]. 2023;20(100442):100442. Disponible en: http://dx.doi.org/10.1016/j.ijft.2023.100442 | |
dc.rights | 2666-2027/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://www.sciencedirect.com/science/article/pii/S266620272300157X | spa |
dc.title | Energy and exergetic performance analysis of a hybrid solar multi-stage Brayton cycle with different working fluids | eng |
dc.type | Artículo de revista | spa |
dcterms.references | [1] M. Santhosh, C. Venkaiah, D.M. Vinod Kumar, Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: a review, Eng. Reports 2 (6) (2020) 1–20. | spa |
dcterms.references | [2] H. Aljaghoub, F. Abumadi, M.N. AlMallahi, K. Obaideen, A.H. Alami, Solar PV cleaning techniques contribute to sustainable development goals (SDGs) using multi-criteria decision-making (MCDM): assessment and review, Int. J. Thermofluids 16 (October) (2022), 100233. | spa |
dcterms.references | [3] S. Dmitry, S. Liubov, Numerical modelling of heat accumulator performance at storage of solar energy, Int. J. Thermofluids 17 (December 2022) (2023), 100268. | spa |
dcterms.references | [4] F. Moreno-Gamboa, C. Nieto-Londono, ˜ Hybrid Brayton multi-stage concentrated solar power plant energy and exergy performance study, J. Energy Resour. Technol. 143 (6) (2021). | spa |
dcterms.references | [5] S.C. Kaushik, V.S. Reddy, S.K. Tyagi, Energy and exergy analyses of thermal power plants: a review, Renew. Sustain. Energy Rev. 15 (4) (2011) 1857–1872. | spa |
dcterms.references | [6] F. Moreno-Gamboa, A. Escudero-Atehortua, C. Nieto-Londono, ˜ Alternatives to improve performance and operation of a hybrid solar thermal power plant using hybrid closed Brayton cycle, Sustainability 14 (15) (2022) 9479. | spa |
dcterms.references | [7] REN 21, “Renewables 2021, global status report,” 2021. | spa |
dcterms.references | [8] S. Guo, Q. Liu, J. Sun, H. Jin, A review on the utilisation of hybrid renewable energy, Renew. Sustain. Energy Rev. 91 (2018) 1121–1147. Elsevier Ltd01-Aug-. | spa |
dcterms.references | [9] M. Quero, R. Korzynietz, M. Ebert, A.A. Jim´enez, A. Río, J.A. Brioso, Solugas – operation experience of the first solar hybrid gas turbine system at MW scale, Energy Procedia 49 (2014) 1820–1830. | spa |
dcterms.references | [10] M.T. Dunham, B.D. Iverson, High-efficiency thermodynamic power cycles for concentrated solar power systems, Renew. Sustain. Energy Rev. 30 (2014) 758–770. | spa |
dcterms.references | [11] T.K. Ibrahim, et al., Thermal performance of gas turbine power plant based on exergy analysis, Appl. Therm. Eng. 115 (2017) 977–985. Mar. | spa |
dcterms.references | [12] P.E.B. de Mello, D.B. Monteiro, Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger, Energy 45 (1) (2012) 497–502. Sep | spa |
dcterms.references | [13] E. Jansen, T. Bello-Ochende, J.P. Meyer, Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output, Energy 86 (2015) 737–748. Jun. | spa |
dcterms.references | [14] M.K. Sahu, Sanjay, Thermoeconomic investigation of basic and intercooled gas turbine based power utilities incorporating air-film blade cooling, J. Clean. Prod. 170 (2018) 842–856. Jan. | spa |
dcterms.references | [15] M.K. Sahu, Sanjay, Thermoeconomic investigation of power utilities: intercooled recuperated gas turbine cycle featuring cooled turbine blades, Energy 138 (2017) 490–499. Nov. | spa |
dcterms.references | [16] T. Nada, Performance characterisation of different configurations of gas turbine engines, Propuls. Power Res. 3 (3) (2014) 121–132. Sep. | spa |
dcterms.references | [17] S. Sanaye, M. Amani, P. Amani, 4E modeling and multi-criteria optimisation of CCHPW gas turbine plant with inlet air cooling and steam injection, Sustain. Energy Technol. Assessments 29 (2018) 70–81. Oct. | spa |
dcterms.references | [18] P. Heller, et al., Test and evaluation of a solar powered gas turbine system, Sol. Energy 80 (10) (2006) 1225–1230. Oct. | spa |
dcterms.references | [19] D. Olivenza-Leon, ´ A. Medina, A.Calvo Hernandez, ´ Thermodynamic modeling of a hybrid solar gas-turbine power plant, Energy Convers. Manag. 93 (2015) 435–447. | spa |
dcterms.references | [20] M.J. Santos, R.P. Merchan, ´ A. Medina, A.Calvo Hernandez, ´ Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant, Energy Convers. Manag. 115 (2016) 89–102. | spa |
dcterms.references | [21] M. Livshits, A. Kribus, Solar hybrid steam injection gas turbine (STIG) cycle, Sol. Energy 86 (1) (2012) 190–199. Jan | spa |
dcterms.references | [22] G. Barigozzi, A. Perdichizzi, C. Gritti, I. Guaiatelli, Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions, Appl. Therm. Eng. 82 (2015) 57–67. May. | spa |
dcterms.references | [23] M.J. Santos, C. Miguel-Barbero, R.P. Merch´ an, A. Medina, A.Calvo Hern´ andez, Roads to improve the performance of hybrid thermosolar gas turbine power plants: working fluids and multi-stage configurations, Energy Convers. Manag. 165 (December 2017) (2018) 578–592. | spa |
dcterms.references | [24] W. Scheuermann, N. Haneklaus, and M. Fütterer, The high temperature gas-cooled reactor: safety considerations of the (V)HTR-Modul, no. V. 2017. | spa |
dcterms.references | [25] I.A. Weisbrodt, “Summary report on technical experiences from high temperature helium turbine in Germany. Report IAE-TECDOC-899 Vienna,” 1994. | spa |
dcterms.references | [26] Y. Ding, Status of development and deployment scheme of HTR-PM in the People’s Republic of China, in: Interregional Workshop on Advanced Nuclear Reactor Technology for Near Term Deployment, 2011. | spa |
dcterms.references | [27] Y. Liu, Y. Wang, D. Huang, Supercritical CO2 Brayton cycle: a state-of-the-art review, Energy 189 (2019), 115900. | spa |
dcterms.references | [28] T. Neises, C. Turchi, A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications, Energy Procedia 49 (2014) 1187–1196. | spa |
dcterms.references | [29] X. Lei, R. Peng, Z. Guo, H. Li, K. Ali, X. Zhou, Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures, Int. J. Heat Mass Transf. 152 (2020), 119562. | spa |
dcterms.references | [30] D. Thanganadar, F. Asfand, K. Patchigolla, Thermal performance and economic analysis of supercritical Carbon Dioxide cycles in combined cycle power plant, Appl. Energy 255 (2019), 113836. Dec. | spa |
dcterms.references | [31] A. Calvo Hern´ andez, J.M.M. Roco, A. Medina, Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages, J. Phys. D. Appl. Phys. 29 (6) (1996) 1462–1468. | spa |
dcterms.references | [32] C.A. Gueymard, Prediction and performance assessment of mean hourly global radiation, Sol. Energy 68 (3) (2000) 285–303. | spa |
dcterms.references | [33] Y. Goswami, Principles of Solar Engineering, 3rd edit, CRC Press Taylor & Francis Group, Boca Raton, FL, 2015. | spa |
dcterms.references | [34] F. Moreno-Gamboa, A. Escudero-Atehortua, C. Nieto-Londono, ˜ Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods, Therm. Sci. Eng. Prog. 20 (2020), 100679. | spa |
dcterms.references | [35] B. Joshi, Thermodynamic work for N-step isothermal processes involving and ideal gas, J. Chem. Educ. 63 (1986) 24–27. | spa |
dcterms.references | [36] M. Romero, R. Buck, J.E. Pacheco, An update on solar central receiver systems, projects, and technologies, J. Sol. Energy Eng. 124 (2) (2002) 98–109. May. | spa |
dcterms.references | [37] J. Duffie, W. Beckman, Solar Engineering of Thermal Processes, Fourth Edi, John Wiley & Sons, New Jersey, 2013. | spa |
dcterms.references | [38] L. Chen, N. Ni, F. Sun, FTT performance of a closed regenerative Brayton cycle coupled to variable-temperature heat reservoir, in: Proceedings of the International Conference on Marine Engineering, 1996, pp. 371–1996. | spa |
dcterms.references | [39] Y.A. Cengel and M.E. Boles, Thermodynamics: an engineering approach. 2012. | spa |
dcterms.references | [40] T. Yue, N. Lior, Thermal hybrid power systems using multiple heat sources of different temperature: thermodynamic analysis for Brayton cycles, Energy 165 (2018) 639–665. | spa |
dcterms.references | [41] R. Petela, Exergy of undiluted thermal radiation, Sol. Energy 74 (February) (2003) 469–488 | spa |
dcterms.references | [42] N. A. and S. A. (NASA), “Power data access viewer,” 2018. | spa |
dcterms.references | [43] Meteosevilla, “Estacion meterologica ´ santiponce, Sevilla, Espana. ˜ ” [Online]. Available: www.meteosevilla.com. [Accessed: 25-Jun-2021]. | spa |
dcterms.references | [44] R. Mejdoul, M. Taqi, The mean hourly global radiation prediction models investigation in two different climate regions in Morocco, Int. J. Renew. Energy Res. 2 (4) (2012) 608–617. | spa |
dcterms.references | [45] W. Yao, Z. Li, T. Xiu, Y. Lu, X. Li, New decomposition models to estimate hourly global solar radiation from the daily value, Sol. Energy 120 (2015) 87–99. | spa |
dcterms.references | [46] C.A. Gueymard, J.A. Ruiz-Arias, Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance, Sol. Energy 128 (2016) 1–30. | spa |
dcterms.references | [47] S. Sanchez Orgaz, Tesis Doctoral, Univesidad de Salamanca, 2012. | spa |
dcterms.references | [48] A. Romier, Small gas turbine technology, Appl. Therm. Eng. 24 (11–12) (2004) 1709–1723. | spa |
dcterms.references | [49] L.E. Herranz, J.I. Linares, B.Y. Moratilla, Power cycle assessment of nuclear high temperature gas-cooled reactors, Appl. Therm. Eng. 29 (8–9) (2009) 1759–1765. Jun | spa |
dcterms.references | [50] M. Kulhanek, ´ V. Dost´ al, Supercritical carbon dioxide cycles thermodynamic analysis and comparison, in: Supercritical CO2 power cycle symposium, 2011. | spa |
dcterms.references | [51] H.J. Lee, H. Kim, C. Jang, Compatibility of candidate structural materials in hightemperature S-CO2 environment, in: The 4th International Symposium - Supercritical CO2 Power Cycles, 2014, pp. 1–9. | spa |
dcterms.references | [52] C.F. McDonald, Helium turbomachinery operating experience from gas turbine power plants and test facilities, Appl. Therm. Eng. 44 (2012) 108–142. Pergamon01-Nov-. | spa |
dcterms.references | [53] O. Olumayegun, M. Wang, G. Kelsall, Closed-cycle gas turbine for power generation: a state-of-the-art review, Fuel 180 (2016) 694–717. | spa |
dcterms.references | [54] “Modelica.Media.IdealGases.SingleGases.CO2.” [Online]. Available: https://build. openmodelica.org/Documentation/Modelica.Media.IdealGases.SingleGases.CO2. html. [Accessed: 21-Mar-2020]. | spa |
dcterms.references | [55] E. Ramírez-Cerpa, M. Acosta-Coll, J. V´elez-Zapata, An´ alisis de condiciones climatologicas ´ de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia, Idesia (Arica) 35 (ahead) (2017), 0–0. | spa |
dcterms.references | [56] J.H. Horlock, W.W. Bathie, Advanced Gas Turbine Cycles, 126, 2004. | spa |
dcterms.references | [57] M.E. Siddiqui, K.H. Almitani, Energy and exergy assessment of s-CO2 Brayton cycle coupled with a solar tower system, Processes 8 (10) (2020) 1–23. | spa |
dcterms.references | [58] R.P. Merch´ an, M.J. Santos, I. Heras, J. Gonzalez-Ayala, A. Medina, A.C. Hernandez, ´ On-design pre-optimisation and off-design analysis of hybrid Brayton thermosolar tower power plants for different fluids and plant configurations, Renew. Sustain. Energy Rev. 119 (2020). | spa |
dcterms.references | [59] R.P. Merch´ an, M.J. Santos, A. Medina, A.Calvo Hern´ andez, Thermodynamic model of a hybrid Brayton thermosolar plant, Renew. Energy 128 (2018) 473–483. | spa |
dcterms.references | [60] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365. | spa |
dcterms.references | [61] V. Zare, M. Hasanzadeh, Energy and exergy analysis of a closed Brayton cyclebased combined cycle for solar power tower plants, Energy Convers. Manag. 128 (2016) 227–237. | spa |
dc.identifier.doi | https://doi.org/10.1016/j.ijft.2023.100442 | |
dc.relation.citationedition | Vol.20 (2023) | spa |
dc.relation.citationendpage | 14 | spa |
dc.relation.citationissue | (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 20 | spa |
dc.relation.ispartofjournal | International Journal of Thermofluids | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | CSP Brayton cycle | eng |
dc.subject.proposal | Exergy analysis | eng |
dc.subject.proposal | Energy systems analysis | eng |
dc.subject.proposal | Working fluids | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |