Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorNieto-Londoño, César
dc.date.accessioned2024-03-20T15:01:48Z
dc.date.available2024-03-20T15:01:48Z
dc.date.issued2023-08-10
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6741
dc.description.abstractAn energy and exergy model for a hybrid multi-stage Brayton cycle solar thermal plant is presented, incorporating an arbitrary number of compression stages with intermediate cooling and expansion with reheating. In hybrid operation, the cycle receives thermal energy from a solar concentration system of a heliostat field and a central tower complemented by reheaters and an external main combustion chamber of natural gas. The proposed model considers the irreversibility of the plant’s components, and direct solar radiation is estimated with the Daily Integration Approach model. The model is validated and implemented with the Solugas experimental plant parameters and is applied in Barranquilla, Colombia. Additionally, this work presents a comparative analysis of different plant configurations using air, carbon dioxide and helium as working fluids. Comparing the power, the energetic and exergetic efficiencies, and the destruction of exergy on an average day of the year, the maximum points of these variables are also found as a function of the pressure ratio. Observing that the twocompression-one-expansion CO2 cycle presents maximum fuel conversion rates and the slightest destruction of total exergy.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Thermofluidsspa
dc.relation.ispartofMoreno-Gamboa F, Nieto-Londoño C. Energy and exergetic performance analysis of a hybrid solar multi-stage Brayton cycle with different working fluids. International Journal of Thermofluids [Internet]. 2023;20(100442):100442. Disponible en: http://dx.doi.org/10.1016/j.ijft.2023.100442
dc.rights2666-2027/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S266620272300157Xspa
dc.titleEnergy and exergetic performance analysis of a hybrid solar multi-stage Brayton cycle with different working fluidseng
dc.typeArtículo de revistaspa
dcterms.references[1] M. Santhosh, C. Venkaiah, D.M. Vinod Kumar, Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: a review, Eng. Reports 2 (6) (2020) 1–20.spa
dcterms.references[2] H. Aljaghoub, F. Abumadi, M.N. AlMallahi, K. Obaideen, A.H. Alami, Solar PV cleaning techniques contribute to sustainable development goals (SDGs) using multi-criteria decision-making (MCDM): assessment and review, Int. J. Thermofluids 16 (October) (2022), 100233.spa
dcterms.references[3] S. Dmitry, S. Liubov, Numerical modelling of heat accumulator performance at storage of solar energy, Int. J. Thermofluids 17 (December 2022) (2023), 100268.spa
dcterms.references[4] F. Moreno-Gamboa, C. Nieto-Londono, ˜ Hybrid Brayton multi-stage concentrated solar power plant energy and exergy performance study, J. Energy Resour. Technol. 143 (6) (2021).spa
dcterms.references[5] S.C. Kaushik, V.S. Reddy, S.K. Tyagi, Energy and exergy analyses of thermal power plants: a review, Renew. Sustain. Energy Rev. 15 (4) (2011) 1857–1872.spa
dcterms.references[6] F. Moreno-Gamboa, A. Escudero-Atehortua, C. Nieto-Londono, ˜ Alternatives to improve performance and operation of a hybrid solar thermal power plant using hybrid closed Brayton cycle, Sustainability 14 (15) (2022) 9479.spa
dcterms.references[7] REN 21, “Renewables 2021, global status report,” 2021.spa
dcterms.references[8] S. Guo, Q. Liu, J. Sun, H. Jin, A review on the utilisation of hybrid renewable energy, Renew. Sustain. Energy Rev. 91 (2018) 1121–1147. Elsevier Ltd01-Aug-.spa
dcterms.references[9] M. Quero, R. Korzynietz, M. Ebert, A.A. Jim´enez, A. Río, J.A. Brioso, Solugas – operation experience of the first solar hybrid gas turbine system at MW scale, Energy Procedia 49 (2014) 1820–1830.spa
dcterms.references[10] M.T. Dunham, B.D. Iverson, High-efficiency thermodynamic power cycles for concentrated solar power systems, Renew. Sustain. Energy Rev. 30 (2014) 758–770.spa
dcterms.references[11] T.K. Ibrahim, et al., Thermal performance of gas turbine power plant based on exergy analysis, Appl. Therm. Eng. 115 (2017) 977–985. Mar.spa
dcterms.references[12] P.E.B. de Mello, D.B. Monteiro, Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger, Energy 45 (1) (2012) 497–502. Sepspa
dcterms.references[13] E. Jansen, T. Bello-Ochende, J.P. Meyer, Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output, Energy 86 (2015) 737–748. Jun.spa
dcterms.references[14] M.K. Sahu, Sanjay, Thermoeconomic investigation of basic and intercooled gas turbine based power utilities incorporating air-film blade cooling, J. Clean. Prod. 170 (2018) 842–856. Jan.spa
dcterms.references[15] M.K. Sahu, Sanjay, Thermoeconomic investigation of power utilities: intercooled recuperated gas turbine cycle featuring cooled turbine blades, Energy 138 (2017) 490–499. Nov.spa
dcterms.references[16] T. Nada, Performance characterisation of different configurations of gas turbine engines, Propuls. Power Res. 3 (3) (2014) 121–132. Sep.spa
dcterms.references[17] S. Sanaye, M. Amani, P. Amani, 4E modeling and multi-criteria optimisation of CCHPW gas turbine plant with inlet air cooling and steam injection, Sustain. Energy Technol. Assessments 29 (2018) 70–81. Oct.spa
dcterms.references[18] P. Heller, et al., Test and evaluation of a solar powered gas turbine system, Sol. Energy 80 (10) (2006) 1225–1230. Oct.spa
dcterms.references[19] D. Olivenza-Leon, ´ A. Medina, A.Calvo Hernandez, ´ Thermodynamic modeling of a hybrid solar gas-turbine power plant, Energy Convers. Manag. 93 (2015) 435–447.spa
dcterms.references[20] M.J. Santos, R.P. Merchan, ´ A. Medina, A.Calvo Hernandez, ´ Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant, Energy Convers. Manag. 115 (2016) 89–102.spa
dcterms.references[21] M. Livshits, A. Kribus, Solar hybrid steam injection gas turbine (STIG) cycle, Sol. Energy 86 (1) (2012) 190–199. Janspa
dcterms.references[22] G. Barigozzi, A. Perdichizzi, C. Gritti, I. Guaiatelli, Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions, Appl. Therm. Eng. 82 (2015) 57–67. May.spa
dcterms.references[23] M.J. Santos, C. Miguel-Barbero, R.P. Merch´ an, A. Medina, A.Calvo Hern´ andez, Roads to improve the performance of hybrid thermosolar gas turbine power plants: working fluids and multi-stage configurations, Energy Convers. Manag. 165 (December 2017) (2018) 578–592.spa
dcterms.references[24] W. Scheuermann, N. Haneklaus, and M. Fütterer, The high temperature gas-cooled reactor: safety considerations of the (V)HTR-Modul, no. V. 2017.spa
dcterms.references[25] I.A. Weisbrodt, “Summary report on technical experiences from high temperature helium turbine in Germany. Report IAE-TECDOC-899 Vienna,” 1994.spa
dcterms.references[26] Y. Ding, Status of development and deployment scheme of HTR-PM in the People’s Republic of China, in: Interregional Workshop on Advanced Nuclear Reactor Technology for Near Term Deployment, 2011.spa
dcterms.references[27] Y. Liu, Y. Wang, D. Huang, Supercritical CO2 Brayton cycle: a state-of-the-art review, Energy 189 (2019), 115900.spa
dcterms.references[28] T. Neises, C. Turchi, A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications, Energy Procedia 49 (2014) 1187–1196.spa
dcterms.references[29] X. Lei, R. Peng, Z. Guo, H. Li, K. Ali, X. Zhou, Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures, Int. J. Heat Mass Transf. 152 (2020), 119562.spa
dcterms.references[30] D. Thanganadar, F. Asfand, K. Patchigolla, Thermal performance and economic analysis of supercritical Carbon Dioxide cycles in combined cycle power plant, Appl. Energy 255 (2019), 113836. Dec.spa
dcterms.references[31] A. Calvo Hern´ andez, J.M.M. Roco, A. Medina, Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages, J. Phys. D. Appl. Phys. 29 (6) (1996) 1462–1468.spa
dcterms.references[32] C.A. Gueymard, Prediction and performance assessment of mean hourly global radiation, Sol. Energy 68 (3) (2000) 285–303.spa
dcterms.references[33] Y. Goswami, Principles of Solar Engineering, 3rd edit, CRC Press Taylor & Francis Group, Boca Raton, FL, 2015.spa
dcterms.references[34] F. Moreno-Gamboa, A. Escudero-Atehortua, C. Nieto-Londono, ˜ Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods, Therm. Sci. Eng. Prog. 20 (2020), 100679.spa
dcterms.references[35] B. Joshi, Thermodynamic work for N-step isothermal processes involving and ideal gas, J. Chem. Educ. 63 (1986) 24–27.spa
dcterms.references[36] M. Romero, R. Buck, J.E. Pacheco, An update on solar central receiver systems, projects, and technologies, J. Sol. Energy Eng. 124 (2) (2002) 98–109. May.spa
dcterms.references[37] J. Duffie, W. Beckman, Solar Engineering of Thermal Processes, Fourth Edi, John Wiley & Sons, New Jersey, 2013.spa
dcterms.references[38] L. Chen, N. Ni, F. Sun, FTT performance of a closed regenerative Brayton cycle coupled to variable-temperature heat reservoir, in: Proceedings of the International Conference on Marine Engineering, 1996, pp. 371–1996.spa
dcterms.references[39] Y.A. Cengel and M.E. Boles, Thermodynamics: an engineering approach. 2012.spa
dcterms.references[40] T. Yue, N. Lior, Thermal hybrid power systems using multiple heat sources of different temperature: thermodynamic analysis for Brayton cycles, Energy 165 (2018) 639–665.spa
dcterms.references[41] R. Petela, Exergy of undiluted thermal radiation, Sol. Energy 74 (February) (2003) 469–488spa
dcterms.references[42] N. A. and S. A. (NASA), “Power data access viewer,” 2018.spa
dcterms.references[43] Meteosevilla, “Estacion meterologica ´ santiponce, Sevilla, Espana. ˜ ” [Online]. Available: www.meteosevilla.com. [Accessed: 25-Jun-2021].spa
dcterms.references[44] R. Mejdoul, M. Taqi, The mean hourly global radiation prediction models investigation in two different climate regions in Morocco, Int. J. Renew. Energy Res. 2 (4) (2012) 608–617.spa
dcterms.references[45] W. Yao, Z. Li, T. Xiu, Y. Lu, X. Li, New decomposition models to estimate hourly global solar radiation from the daily value, Sol. Energy 120 (2015) 87–99.spa
dcterms.references[46] C.A. Gueymard, J.A. Ruiz-Arias, Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance, Sol. Energy 128 (2016) 1–30.spa
dcterms.references[47] S. Sanchez Orgaz, Tesis Doctoral, Univesidad de Salamanca, 2012.spa
dcterms.references[48] A. Romier, Small gas turbine technology, Appl. Therm. Eng. 24 (11–12) (2004) 1709–1723.spa
dcterms.references[49] L.E. Herranz, J.I. Linares, B.Y. Moratilla, Power cycle assessment of nuclear high temperature gas-cooled reactors, Appl. Therm. Eng. 29 (8–9) (2009) 1759–1765. Junspa
dcterms.references[50] M. Kulhanek, ´ V. Dost´ al, Supercritical carbon dioxide cycles thermodynamic analysis and comparison, in: Supercritical CO2 power cycle symposium, 2011.spa
dcterms.references[51] H.J. Lee, H. Kim, C. Jang, Compatibility of candidate structural materials in hightemperature S-CO2 environment, in: The 4th International Symposium - Supercritical CO2 Power Cycles, 2014, pp. 1–9.spa
dcterms.references[52] C.F. McDonald, Helium turbomachinery operating experience from gas turbine power plants and test facilities, Appl. Therm. Eng. 44 (2012) 108–142. Pergamon01-Nov-.spa
dcterms.references[53] O. Olumayegun, M. Wang, G. Kelsall, Closed-cycle gas turbine for power generation: a state-of-the-art review, Fuel 180 (2016) 694–717.spa
dcterms.references[54] “Modelica.Media.IdealGases.SingleGases.CO2.” [Online]. Available: https://build. openmodelica.org/Documentation/Modelica.Media.IdealGases.SingleGases.CO2. html. [Accessed: 21-Mar-2020].spa
dcterms.references[55] E. Ramírez-Cerpa, M. Acosta-Coll, J. V´elez-Zapata, An´ alisis de condiciones climatologicas ´ de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia, Idesia (Arica) 35 (ahead) (2017), 0–0.spa
dcterms.references[56] J.H. Horlock, W.W. Bathie, Advanced Gas Turbine Cycles, 126, 2004.spa
dcterms.references[57] M.E. Siddiqui, K.H. Almitani, Energy and exergy assessment of s-CO2 Brayton cycle coupled with a solar tower system, Processes 8 (10) (2020) 1–23.spa
dcterms.references[58] R.P. Merch´ an, M.J. Santos, I. Heras, J. Gonzalez-Ayala, A. Medina, A.C. Hernandez, ´ On-design pre-optimisation and off-design analysis of hybrid Brayton thermosolar tower power plants for different fluids and plant configurations, Renew. Sustain. Energy Rev. 119 (2020).spa
dcterms.references[59] R.P. Merch´ an, M.J. Santos, A. Medina, A.Calvo Hern´ andez, Thermodynamic model of a hybrid Brayton thermosolar plant, Renew. Energy 128 (2018) 473–483.spa
dcterms.references[60] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365.spa
dcterms.references[61] V. Zare, M. Hasanzadeh, Energy and exergy analysis of a closed Brayton cyclebased combined cycle for solar power tower plants, Energy Convers. Manag. 128 (2016) 227–237.spa
dc.identifier.doihttps://doi.org/10.1016/j.ijft.2023.100442
dc.relation.citationeditionVol.20 (2023)spa
dc.relation.citationendpage14spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume20spa
dc.relation.ispartofjournalInternational Journal of Thermofluidsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalCSP Brayton cycleeng
dc.subject.proposalExergy analysiseng
dc.subject.proposalEnergy systems analysiseng
dc.subject.proposalWorking fluidseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2666-2027/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como 2666-2027/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).