dc.contributor.author | VALENCIA OCHOA, GUILLERMO | |
dc.contributor.author | Villada Castillo, Dora Clemencia | |
dc.contributor.author | Mendoza-Casseres, Daniel | |
dc.date.accessioned | 2024-03-19T14:10:44Z | |
dc.date.available | 2024-03-19T14:10:44Z | |
dc.date.issued | 2023-03-25 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6736 | |
dc.description.abstract | The following research compared some energy, exergetic and thermo-economic indicators of a
supercritical CO2 simple Brayton cycle integrated with a simple organic Rankine cycle (SORC), and a
regenerative organic Rankine cycle (RORC). A thermodynamic model was developed to determine the
net power, thermal efficiency, the fuel consumption, and the exergy destruction of all the components
of the system. Also, a thermo-economic model was developed to determine some economic indicators
such as the levelized cost of energy (LCOE), the payback period (PBP) and specific investment cost (SIC).
A sensitivity analysis was carried out to study the influence of the primary turbine inlet temperature
(TIT), the high-pressure in the compressor (PHigh), the evaporator pinch point temperature difference
(PPT), and the pressure ratio (Pr) on the indicators performance. Three different working fluids were
selected in this study: acetone, toluene and cyclohexane. The results showed that cyclohexane had the
best energy performance giving an efficiency of 48.02% for the RORC system. Besides, it presented the best thermo-economic results for the LCOE (0.26 USD/kWh), SIC (2626.75 USD/kWh), and a PBP (11.2 years). Finally, a multi-objective optimization was developed based on energy, exergy and thermoeconomic performance parameters as objective functions to obtain a technical and economic feasible solution able to implement them in industrial applications | eng |
dc.format.extent | 19 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Energy Reports | spa |
dc.relation.ispartof | Energy Reports Vol.9 (2023) 4437 - 4455 | |
dc.rights | © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://www.sciencedirect.com/science/article/pii/S2352484723003396?ref=pdf_download&fr=RR-2&rr=866dd8951837f78e | spa |
dc.title | Sensitivity analysis and multi-objective optimization of the energy, exergy and thermo-economic performance of a Brayton supercritical CO2-ORC configurations | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Abrosimov, K.A., Baccioli, A., Bischi, A., 2019. Techno-economic analysis of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. X 3, 100014. http://dx.doi.org/ 10.1016/j.ecmx.2019.100014. | spa |
dcterms.references | Akbari, A.D., Mahmoudi, S.M.S., 2014. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 78, 501–512. http://dx.doi.org/10.1016/j. energy.2014.10.037. | spa |
dcterms.references | Arbolino, R., Carlucci, F., Cirà, A., Ioppolo, G., Yigitcanlar, T., 2017. Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecol. Indic. 81, 115–123. http://dx.doi.org/10.1016/ j.ecolind.2017.05.053. | spa |
dcterms.references | Ayub, Z.H., 2003. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf. Eng. 24, 3–16. http://dx.doi.org/10.1080/01457630304056. | spa |
dcterms.references | Benato, A., Macor, A., Rossetti, A., 2017. Biogas engine emissions: Standards and on-site measurements. Energy Procedia 126, 398–405. http://dx.doi.org/10. 1016/j.egypro.2017.08.278. | spa |
dcterms.references | Besarati, S.M., Yogi Goswami, D., 2013. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. J. Sol. Energy Eng. 136, http://dx.doi.org/10.1115/1.4025700. | spa |
dcterms.references | Bouallaga, A., Davigny, A., Courtecuisse, V., Robyns, B., 2017. Methodology for technical and economic assessment of electric vehicles integration in distribution grid. Math. Comput. Simul. 131, 172–189. http://dx.doi.org/10. 1016/j.matcom.2016.05.003. | spa |
dcterms.references | Braimakis, K., Karellas, S., 2017. Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities. Energy 121, 570–598. http://dx.doi.org/10.1016/j.energy.2017.01.042. | spa |
dcterms.references | Cao, Y., Li, P., Qiao, Z., Ren, S., Si, F., 2022. A concept of a supercritical CO2 Brayton and organic Rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization. Energy Rep. 8, 322–333. http://dx.doi.org/10.1016/j.egyr. 2021.11.258. | spa |
dcterms.references | Danieli, P., Rech, S., Lazzaretto, A., 2019. Supercritical CO2 and air Brayton– Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation. Energy 168, 295–309. http://dx.doi.org/10.1016/j. energy.2018.11.089. | spa |
dcterms.references | de Campos, G.B., Bringhenti, C., Traverso, A., Tomita, J.T., 2020. Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines. Appl. Therm. Eng. 164, 114477. http://dx.doi.org/10.1016/j.applthermaleng. 2019.114477. | spa |
dcterms.references | de Oliveira Neto, R., Sotomonte, C.A.R., Coronado, C.J.R., Nascimento, M.A.R., 2016. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers. Manag. 129, 168–179. http://dx.doi.org/10.1016/j.enconman.2016.10.012. | spa |
dcterms.references | Desai, N.B., Bandyopadhyay, S., 2009. Process integration of organic Rankine cycle. Energy 34, 1674–1686. http://dx.doi.org/10.1016/j.energy.2009.04.037 | spa |
dcterms.references | Dudkiewicz, E., Szałański, P., 2020. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls. Therm. Sci. Eng. Prog. 18, 100522. http://dx.doi.org/10.1016/j.tsep.2020.100522. | spa |
dcterms.references | El-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59, 435–444. http://dx.doi.org/10.1016/j.applthermaleng.2013.06.005. | spa |
dcterms.references | Girgin, I., Ezgi, C., 2017. Design and thermodynamic and thermoeconomic analysis of an organic Rankine cycle for naval surface ship applications. Energy Convers. Manag. 148, 623–634. http://dx.doi.org/10.1016/j.enconman. 2017.06.033. | spa |
dcterms.references | Grelet, V., Reiche, T., Lemort, V., Nadri, M., Dufour, P., 2016. Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks. Appl. Energy 165, 878–892. http://dx.doi.org/10.1016/j. apenergy.2015.11.004. | spa |
dcterms.references | Habibi, H., Zoghi, M., Chitsaz, A., Javaherdeh, K., Ayazpour, M., Bellos, E., 2020. Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy– exergy analysis. Sustain. Energy Technol. Assess. 39, 100699. http://dx.doi. org/10.1016/j.seta.2020.100699. | spa |
dcterms.references | Hou, S., Cao, S., Yu, L., Zhou, Y., Wu, Y., Zhang, F., 2018. Performance optimization of combined supercritical CO2 recompression cycle and regenerative organic Rankine cycle using zeotropic mixture fluid. Energy Convers. Manag. 166, 187–200. http://dx.doi.org/10.1016/j.enconman.2018.04.025. | spa |
dcterms.references | Hou, Z., Wei, X., Ma, X., Meng, X., 2020. Exergoeconomic evaluation of waste heat power generation project employing organic rankine cycle. J. Clean. Prod. 246, 119064. http://dx.doi.org/10.1016/j.jclepro.2019.119064. | spa |
dcterms.references | Huang, J., Sheer, T.J., Bailey-Mcewan, M., 2012. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int. J. Refrig. 35, 325–335. http://dx.doi.org/10.1016/j.ijrefrig.2011.11.002 | spa |
dcterms.references | Imran, M., Haglind, F., Asim, M., Zeb Alvi, J., 2018. Recent research trends in organic rankine cycle technology: A bibliometric approach. Renew. Sustain. Energy Rev. 81, 552–562. http://dx.doi.org/10.1016/j.rser.2017.08.028. | spa |
dcterms.references | Invernizzi, C., Iora, P., Silva, P., 2007. Bottoming micro-rankine cycles for microgas turbines. Appl. Therm. Eng. 27, 100–110. http://dx.doi.org/10.1016/j. applthermaleng.2006.05.003. | spa |
dcterms.references | Jaber, H., Khaled, M., Lemenand, T., Faraj, J., Bazzi, H., Ramadan, M., 2017. Effect of exhaust gases temperature on the performance of a hybrid heat recovery system. Energy Procedia 119, 775–782. http://dx.doi.org/10.1016/j. egypro.2017.07.110 | spa |
dcterms.references | Jing, R., Zhu, X., Zhu, Z., Wang, W., Meng, C., Shah, N., Li, N., Zhao, Y., 2018. A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning. Energy Convers. Manag. 166, 445–462. http://dx.doi.org/10.1016/j.enconman.2018.04.054. | spa |
dcterms.references | Khademi, M., Ahmadi, A., Dashti, R., Shirmohammadi, R., 2022. Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system. Energy Rep. 8, 13494–13503. http://dx.doi.org/10.1016/j.egyr.2022.10.010. | spa |
dcterms.references | Khaled, M., Murr, R., El Hage, H., Ramadan, M., Ramadan, H., Becherif, M., 2020. An iterative algorithm for simulating heat recovery from exhaust gas – Application on generators. Math. Comput. Simul. 167, 92–103. http: //dx.doi.org/10.1016/j.matcom.2018.04.011. | spa |
dcterms.references | Kim, Y.M., Kim, C.G., Favrat, D., 2012. Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy 43, 402–415. http://dx.doi.org/10.1016/j.energy.2012.03.076. | spa |
dcterms.references | Kölsch, B., Radulovic, J., 2015. Utilisation of diesel engine waste heat by Organic Rankine Cycle. Appl. Therm. Eng. 78, 437–448. http://dx.doi.org/10.1016/j. applthermaleng.2015.01.004. | spa |
dcterms.references | Kücük, H., Ünverdi, M., Senan Yılmaz, M., 2019. Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger. Int. J. Heat Mass Transfer 143, 118493. http://dx.doi.org/10. 1016/j.ijheatmasstransfer.2019.118493. | spa |
dcterms.references | Li, T., Meng, N., Liu, J., Zhu, J., Kong, X., 2019. Thermodynamic and economic evaluation of the organic Rankine cycle (ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery. Energy Convers. Manag. 183, 816–829. http://dx.doi.org/10.1016/j.enconman.2018.12.094. | spa |
dcterms.references | Liang, Y., Chen, J., Luo, X., Chen, J., Yang, Z., Chen, Y., 2020. Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system. J. Clean. Prod. 266, 121927. http://dx.doi.org/10.1016/j.jclepro.2020.121927. | spa |
dcterms.references | Maizza, V., Maizza, A., 1996. Working fluids in non-steady flows for waste energy recovery systems. Appl. Therm. Eng. 16, 579–590. http://dx.doi.org/10.1016/ 1359-4311(95)00044-5. | spa |
dcterms.references | Mata-Torres, C., Zurita, A., Cardemil, J.M., Escobar, R.A., 2019. Exergy cost and thermoeconomic analysis of a rankine cycle + multi-effect distillation plant considering time-varying conditions. Energy Convers. Manag. 192, 114–132. http://dx.doi.org/10.1016/j.enconman.2019.04.023. | spa |
dcterms.references | Michos, C.N., Lion, S., Vlaskos, I., Taccani, R., 2017. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 132, 347–360. http://dx.doi.org/10.1016/j.enconman. 2016.11.025. | spa |
dcterms.references | Mostafavi, S.A., Mahmoudi, M., 2018. Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Appl. Therm. Eng. 132, 624–636. http://dx.doi.org/10.1016/j.applthermaleng.2018. 01.018. | spa |
dcterms.references | Nami, H., Ertesvåg, I.S., Agromayor, R., Riboldi, L., Nord, L.O., 2018. Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - energy and exergy analysis. Energy http://dx.doi.org/10.1016/j.energy.2018.10.034. | spa |
dcterms.references | Nikitin, K., Kato, Y., Ngo, L., 2006. Printed circuit heat exchanger thermal– hydraulic performance in supercritical CO2 experimental loop. Int. J. Refrig. 29, 807–814. http://dx.doi.org/10.1016/j.ijrefrig.2005.11.005. | spa |
dcterms.references | Noaman, M., Saade, G., Morosuk, T., Tsatsaronis, G., 2019. Exergoeconomic analysis applied to supercritical CO2 power systems. Energy 183, 756–765. http://dx.doi.org/10.1016/j.energy.2019.06.161. | spa |
dcterms.references | Novales, D., Erkoreka, A., De la Peña, V., Herrazti, B., 2019. Sensitivity analysis of supercritical CO2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power. Energy Convers. Manag. 182, 430–450. http://dx.doi.org/10.1016/j.enconman.2018.12.016. | spa |
dcterms.references | Ochoa, G.V., Forero, J.D., Rojas, J.P., 2022. Thermoeconomic analysis of a combined supercritical CO2 reheating under different configurations of Organic Rankine cycle ORC as a bottoming cycle. Heliyon 8, e12230. http://dx.doi. org/10.1016/j.heliyon.2022.e12230. | spa |
dcterms.references | Padilla, R.V., Soo Too, Y.C., Benito, R., Stein, W., 2015. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 148, 348–365. http://dx.doi.org/10.1016/j.apenergy.2015.03.090. | spa |
dcterms.references | Qiao, Z., Cao, Y., Li, P., Wang, X., Romero, C.E., Pan, L., 2020. Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source. J. Clean. Prod. 256, 120374. http://dx.doi.org/10.1016/j.jclepro.2020.120374. | spa |
dcterms.references | Rahbar, K., Mahmoud, S., Al-Dadah, R.K., Moazami, N., Mirhadizadeh, S.A., 2017. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 134, 135–155. http://dx.doi.org/10.1016/j.enconman.2016.12.023. | spa |
dcterms.references | Sánchez Villafana, E.D., Vargas Machuca Bueno, J.P., 2019. Thermoeconomic and environmental analysis and optimization of the supercritical CO2 cycle integration in a simple cycle power plant. Appl. Therm. Eng. 152, 1–12. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.052. | spa |
dcterms.references | Sara, H., Chalet, D., Cormerais, M., 2018. Different configurations of exhaust gas heat recovery in internal combustion engine: Evaluation on different driving cycles using numerical simulations. J. Therm. Sci. Eng. Appl. 10, 1–49. http://dx.doi.org/10.1115/1.4039304. | spa |
dcterms.references | Sarkar, J., 2009. Second law analysis of supercritical CO2 recompression Brayton cycle. Energy 34, 1172–1178. http://dx.doi.org/10.1016/j.energy.2009.04.030 | spa |
dcterms.references | Shengjun, Z., Huaixin, W., Tao, G., 2011. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 88, 2740–2754. http://dx.doi.org/10.1016/j.apenergy.2011.02.034. | spa |
dcterms.references | Shi, L., Shu, G., Tian, H., Deng, S., 2018. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICEWHR). Renew. Sustain. Energy Rev. 92, 95–110. http://dx.doi.org/10.1016/ j.rser.2018.04.023. | spa |
dcterms.references | Song, J., Loo, P., Teo, J., Markides, C.N., 2020. Thermo-economic optimization of organic rankine cycle (ORC) systems for geothermal power generation: A comparative study of system configurations. Front. Energy Res. 8, 1–14. http://dx.doi.org/10.3389/fenrg.2020.00006. | spa |
dcterms.references | Song, J., song Li, X., dong Ren, X., wei Gu, C., 2018. Performance analysis and parametric optimization of supercritical carbon dioxide (s-CO2) cycle with bottoming Organic Rankine Cycle (ORC). Energy 143, 406–416. http: //dx.doi.org/10.1016/j.energy.2017.10.136. | spa |
dcterms.references | Sukumaran, S., Sudhakar, K., 2018. Performance analysis of solar powered airport based on energy and exergy analysis. Energy 149, 1000–1009. http://dx.doi. org/10.1016/j.energy.2018.02.095. | spa |
dcterms.references | Teng, L., Xuan, Y., 2019. Design of a composite receiver for solar-driven supercritical CO2 Brayton cycle. J. CO2 Util. 32, 290–298. http://dx.doi.org/ 10.1016/j.jcou.2019.05.006. | spa |
dcterms.references | Thakar, R., Bhosle, S., Lahane, S., 2018. Design of heat exchanger for waste heat recovery from exhaust gas of diesel engine. Procedia Manuf. 20, 372–376. http://dx.doi.org/10.1016/j.promfg.2018.02.054 | spa |
dcterms.references | Uusitalo, A., Ameli, A., Turunen-Saaresti, T., 2019. Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 167, 60–79. http://dx.doi.org/10.1016/j.energy.2018.10.181. | spa |
dcterms.references | Valencia, G., Fontalvo, A., Cárdenas, Y., Duarte, J., Isaza, C., 2019. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 12, http://dx.doi.org/10.3390/en12122378. | spa |
dcterms.references | Valencia, G., Fontalvo, A., Duarte Forero, J., 2021. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic rankine cycle: Thermo-economic and environmental footprint analysis. Appl. Therm. Eng. 182, 116109. http://dx.doi.org/10.1016/j.applthermaleng.2020.116109. | spa |
dcterms.references | Valencia Ochoa, G., Duarte Forero, J., Rojas, J.P., 2020. A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon 6, e04136. http://dx.doi.org/10.1016/j.heliyon.2020.e04136. | spa |
dcterms.references | White, M.T., Oyewunmi, O.A., Chatzopoulou, M.A., Pantaleo, A.M., Haslam, A.J., Markides, C.N., 2018. Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for wasteheat recovery. Energy 161, 1181–1198. http://dx.doi.org/10.1016/j.energy. 2018.07.098. | spa |
dcterms.references | White, M.T., Oyewunmi, O.A., Haslam, A.J., Markides, C.N., 2017. Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-γ Mie. Energy Convers. Manag. 150, 851–869. http://dx.doi.org/10.1016/j.enconman.2017.03.048. | spa |
dcterms.references | White, M.T., Sayma, A.I., 2019. Simultaneous cycle optimization and fluid selection for ORC systems accounting for the effect of the operating conditions on turbine efficiency. Front. Energy Res. 7, http://dx.doi.org/10.3389/fenrg. 2019.00050. | spa |
dcterms.references | Xia, X.X., Wang, Z.Q., Zhou, N.J., Hu, Y.H., Zhang, J.P., Chen, Y., 2020. Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Appl. Therm. Eng. 171, 115028. http://dx.doi.org/10.1016/j.applthermaleng.2020.115028. | spa |
dcterms.references | Young, D., Gibson, S.C., Bandhauer, T.M., 2018. Working fluid selection and technoeconomic optimization of a turbocompression cooling system. J. Therm. Sci. Eng. Appl. 10, http://dx.doi.org/10.1115/1.4041197. | spa |
dcterms.references | Zare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 105, 127–138. http://dx.doi.org/10.1016/j.enconman.2015.07.073. | spa |
dcterms.references | Zhang, J., Qin, K., Li, D., Luo, K., Dang, J., 2020. Potential of Organic Rankine Cycles for unmanned underwater vehicles. Energy 192, 116559. http://dx. doi.org/10.1016/j.energy.2019.116559. | spa |
dcterms.references | Zhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., Liu, L., Ling, P., Zhong, W., Xiang, J., 2018. Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy Convers. Manag. 173, 348–358. http: //dx.doi.org/10.1016/j.enconman.2018.07.096. | spa |
dc.identifier.doi | https://doi.org/10.1016/j.egyr.2023.03.102 | |
dc.relation.citationedition | Vol.9 (2023) | spa |
dc.relation.citationendpage | 4455 | spa |
dc.relation.citationissue | (2023) | spa |
dc.relation.citationstartpage | 4437 | spa |
dc.relation.citationvolume | 9 | spa |
dc.relation.ispartofjournal | Energy Reports | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |