Show simple item record

dc.contributor.authorVALENCIA OCHOA, GUILLERMO
dc.contributor.authorVillada Castillo, Dora Clemencia
dc.contributor.authorMendoza-Casseres, Daniel
dc.date.accessioned2024-03-19T14:10:44Z
dc.date.available2024-03-19T14:10:44Z
dc.date.issued2023-03-25
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6736
dc.description.abstractThe following research compared some energy, exergetic and thermo-economic indicators of a supercritical CO2 simple Brayton cycle integrated with a simple organic Rankine cycle (SORC), and a regenerative organic Rankine cycle (RORC). A thermodynamic model was developed to determine the net power, thermal efficiency, the fuel consumption, and the exergy destruction of all the components of the system. Also, a thermo-economic model was developed to determine some economic indicators such as the levelized cost of energy (LCOE), the payback period (PBP) and specific investment cost (SIC). A sensitivity analysis was carried out to study the influence of the primary turbine inlet temperature (TIT), the high-pressure in the compressor (PHigh), the evaporator pinch point temperature difference (PPT), and the pressure ratio (Pr) on the indicators performance. Three different working fluids were selected in this study: acetone, toluene and cyclohexane. The results showed that cyclohexane had the best energy performance giving an efficiency of 48.02% for the RORC system. Besides, it presented the best thermo-economic results for the LCOE (0.26 USD/kWh), SIC (2626.75 USD/kWh), and a PBP (11.2 years). Finally, a multi-objective optimization was developed based on energy, exergy and thermoeconomic performance parameters as objective functions to obtain a technical and economic feasible solution able to implement them in industrial applicationseng
dc.format.extent19 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnergy Reportsspa
dc.relation.ispartofEnergy Reports Vol.9 (2023) 4437 - 4455
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2352484723003396?ref=pdf_download&fr=RR-2&rr=866dd8951837f78espa
dc.titleSensitivity analysis and multi-objective optimization of the energy, exergy and thermo-economic performance of a Brayton supercritical CO2-ORC configurationseng
dc.typeArtículo de revistaspa
dcterms.referencesAbrosimov, K.A., Baccioli, A., Bischi, A., 2019. Techno-economic analysis of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. X 3, 100014. http://dx.doi.org/ 10.1016/j.ecmx.2019.100014.spa
dcterms.referencesAkbari, A.D., Mahmoudi, S.M.S., 2014. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 78, 501–512. http://dx.doi.org/10.1016/j. energy.2014.10.037.spa
dcterms.referencesArbolino, R., Carlucci, F., Cirà, A., Ioppolo, G., Yigitcanlar, T., 2017. Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecol. Indic. 81, 115–123. http://dx.doi.org/10.1016/ j.ecolind.2017.05.053.spa
dcterms.referencesAyub, Z.H., 2003. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf. Eng. 24, 3–16. http://dx.doi.org/10.1080/01457630304056.spa
dcterms.referencesBenato, A., Macor, A., Rossetti, A., 2017. Biogas engine emissions: Standards and on-site measurements. Energy Procedia 126, 398–405. http://dx.doi.org/10. 1016/j.egypro.2017.08.278.spa
dcterms.referencesBesarati, S.M., Yogi Goswami, D., 2013. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. J. Sol. Energy Eng. 136, http://dx.doi.org/10.1115/1.4025700.spa
dcterms.referencesBouallaga, A., Davigny, A., Courtecuisse, V., Robyns, B., 2017. Methodology for technical and economic assessment of electric vehicles integration in distribution grid. Math. Comput. Simul. 131, 172–189. http://dx.doi.org/10. 1016/j.matcom.2016.05.003.spa
dcterms.referencesBraimakis, K., Karellas, S., 2017. Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities. Energy 121, 570–598. http://dx.doi.org/10.1016/j.energy.2017.01.042.spa
dcterms.referencesCao, Y., Li, P., Qiao, Z., Ren, S., Si, F., 2022. A concept of a supercritical CO2 Brayton and organic Rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization. Energy Rep. 8, 322–333. http://dx.doi.org/10.1016/j.egyr. 2021.11.258.spa
dcterms.referencesDanieli, P., Rech, S., Lazzaretto, A., 2019. Supercritical CO2 and air Brayton– Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation. Energy 168, 295–309. http://dx.doi.org/10.1016/j. energy.2018.11.089.spa
dcterms.referencesde Campos, G.B., Bringhenti, C., Traverso, A., Tomita, J.T., 2020. Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines. Appl. Therm. Eng. 164, 114477. http://dx.doi.org/10.1016/j.applthermaleng. 2019.114477.spa
dcterms.referencesde Oliveira Neto, R., Sotomonte, C.A.R., Coronado, C.J.R., Nascimento, M.A.R., 2016. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers. Manag. 129, 168–179. http://dx.doi.org/10.1016/j.enconman.2016.10.012.spa
dcterms.referencesDesai, N.B., Bandyopadhyay, S., 2009. Process integration of organic Rankine cycle. Energy 34, 1674–1686. http://dx.doi.org/10.1016/j.energy.2009.04.037spa
dcterms.referencesDudkiewicz, E., Szałański, P., 2020. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls. Therm. Sci. Eng. Prog. 18, 100522. http://dx.doi.org/10.1016/j.tsep.2020.100522.spa
dcterms.referencesEl-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59, 435–444. http://dx.doi.org/10.1016/j.applthermaleng.2013.06.005.spa
dcterms.referencesGirgin, I., Ezgi, C., 2017. Design and thermodynamic and thermoeconomic analysis of an organic Rankine cycle for naval surface ship applications. Energy Convers. Manag. 148, 623–634. http://dx.doi.org/10.1016/j.enconman. 2017.06.033.spa
dcterms.referencesGrelet, V., Reiche, T., Lemort, V., Nadri, M., Dufour, P., 2016. Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks. Appl. Energy 165, 878–892. http://dx.doi.org/10.1016/j. apenergy.2015.11.004.spa
dcterms.referencesHabibi, H., Zoghi, M., Chitsaz, A., Javaherdeh, K., Ayazpour, M., Bellos, E., 2020. Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy– exergy analysis. Sustain. Energy Technol. Assess. 39, 100699. http://dx.doi. org/10.1016/j.seta.2020.100699.spa
dcterms.referencesHou, S., Cao, S., Yu, L., Zhou, Y., Wu, Y., Zhang, F., 2018. Performance optimization of combined supercritical CO2 recompression cycle and regenerative organic Rankine cycle using zeotropic mixture fluid. Energy Convers. Manag. 166, 187–200. http://dx.doi.org/10.1016/j.enconman.2018.04.025.spa
dcterms.referencesHou, Z., Wei, X., Ma, X., Meng, X., 2020. Exergoeconomic evaluation of waste heat power generation project employing organic rankine cycle. J. Clean. Prod. 246, 119064. http://dx.doi.org/10.1016/j.jclepro.2019.119064.spa
dcterms.referencesHuang, J., Sheer, T.J., Bailey-Mcewan, M., 2012. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int. J. Refrig. 35, 325–335. http://dx.doi.org/10.1016/j.ijrefrig.2011.11.002spa
dcterms.referencesImran, M., Haglind, F., Asim, M., Zeb Alvi, J., 2018. Recent research trends in organic rankine cycle technology: A bibliometric approach. Renew. Sustain. Energy Rev. 81, 552–562. http://dx.doi.org/10.1016/j.rser.2017.08.028.spa
dcterms.referencesInvernizzi, C., Iora, P., Silva, P., 2007. Bottoming micro-rankine cycles for microgas turbines. Appl. Therm. Eng. 27, 100–110. http://dx.doi.org/10.1016/j. applthermaleng.2006.05.003.spa
dcterms.referencesJaber, H., Khaled, M., Lemenand, T., Faraj, J., Bazzi, H., Ramadan, M., 2017. Effect of exhaust gases temperature on the performance of a hybrid heat recovery system. Energy Procedia 119, 775–782. http://dx.doi.org/10.1016/j. egypro.2017.07.110spa
dcterms.referencesJing, R., Zhu, X., Zhu, Z., Wang, W., Meng, C., Shah, N., Li, N., Zhao, Y., 2018. A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning. Energy Convers. Manag. 166, 445–462. http://dx.doi.org/10.1016/j.enconman.2018.04.054.spa
dcterms.referencesKhademi, M., Ahmadi, A., Dashti, R., Shirmohammadi, R., 2022. Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system. Energy Rep. 8, 13494–13503. http://dx.doi.org/10.1016/j.egyr.2022.10.010.spa
dcterms.referencesKhaled, M., Murr, R., El Hage, H., Ramadan, M., Ramadan, H., Becherif, M., 2020. An iterative algorithm for simulating heat recovery from exhaust gas – Application on generators. Math. Comput. Simul. 167, 92–103. http: //dx.doi.org/10.1016/j.matcom.2018.04.011.spa
dcterms.referencesKim, Y.M., Kim, C.G., Favrat, D., 2012. Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy 43, 402–415. http://dx.doi.org/10.1016/j.energy.2012.03.076.spa
dcterms.referencesKölsch, B., Radulovic, J., 2015. Utilisation of diesel engine waste heat by Organic Rankine Cycle. Appl. Therm. Eng. 78, 437–448. http://dx.doi.org/10.1016/j. applthermaleng.2015.01.004.spa
dcterms.referencesKücük, H., Ünverdi, M., Senan Yılmaz, M., 2019. Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger. Int. J. Heat Mass Transfer 143, 118493. http://dx.doi.org/10. 1016/j.ijheatmasstransfer.2019.118493.spa
dcterms.referencesLi, T., Meng, N., Liu, J., Zhu, J., Kong, X., 2019. Thermodynamic and economic evaluation of the organic Rankine cycle (ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery. Energy Convers. Manag. 183, 816–829. http://dx.doi.org/10.1016/j.enconman.2018.12.094.spa
dcterms.referencesLiang, Y., Chen, J., Luo, X., Chen, J., Yang, Z., Chen, Y., 2020. Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system. J. Clean. Prod. 266, 121927. http://dx.doi.org/10.1016/j.jclepro.2020.121927.spa
dcterms.referencesMaizza, V., Maizza, A., 1996. Working fluids in non-steady flows for waste energy recovery systems. Appl. Therm. Eng. 16, 579–590. http://dx.doi.org/10.1016/ 1359-4311(95)00044-5.spa
dcterms.referencesMata-Torres, C., Zurita, A., Cardemil, J.M., Escobar, R.A., 2019. Exergy cost and thermoeconomic analysis of a rankine cycle + multi-effect distillation plant considering time-varying conditions. Energy Convers. Manag. 192, 114–132. http://dx.doi.org/10.1016/j.enconman.2019.04.023.spa
dcterms.referencesMichos, C.N., Lion, S., Vlaskos, I., Taccani, R., 2017. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 132, 347–360. http://dx.doi.org/10.1016/j.enconman. 2016.11.025.spa
dcterms.referencesMostafavi, S.A., Mahmoudi, M., 2018. Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Appl. Therm. Eng. 132, 624–636. http://dx.doi.org/10.1016/j.applthermaleng.2018. 01.018.spa
dcterms.referencesNami, H., Ertesvåg, I.S., Agromayor, R., Riboldi, L., Nord, L.O., 2018. Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - energy and exergy analysis. Energy http://dx.doi.org/10.1016/j.energy.2018.10.034.spa
dcterms.referencesNikitin, K., Kato, Y., Ngo, L., 2006. Printed circuit heat exchanger thermal– hydraulic performance in supercritical CO2 experimental loop. Int. J. Refrig. 29, 807–814. http://dx.doi.org/10.1016/j.ijrefrig.2005.11.005.spa
dcterms.referencesNoaman, M., Saade, G., Morosuk, T., Tsatsaronis, G., 2019. Exergoeconomic analysis applied to supercritical CO2 power systems. Energy 183, 756–765. http://dx.doi.org/10.1016/j.energy.2019.06.161.spa
dcterms.referencesNovales, D., Erkoreka, A., De la Peña, V., Herrazti, B., 2019. Sensitivity analysis of supercritical CO2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power. Energy Convers. Manag. 182, 430–450. http://dx.doi.org/10.1016/j.enconman.2018.12.016.spa
dcterms.referencesOchoa, G.V., Forero, J.D., Rojas, J.P., 2022. Thermoeconomic analysis of a combined supercritical CO2 reheating under different configurations of Organic Rankine cycle ORC as a bottoming cycle. Heliyon 8, e12230. http://dx.doi. org/10.1016/j.heliyon.2022.e12230.spa
dcterms.referencesPadilla, R.V., Soo Too, Y.C., Benito, R., Stein, W., 2015. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 148, 348–365. http://dx.doi.org/10.1016/j.apenergy.2015.03.090.spa
dcterms.referencesQiao, Z., Cao, Y., Li, P., Wang, X., Romero, C.E., Pan, L., 2020. Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source. J. Clean. Prod. 256, 120374. http://dx.doi.org/10.1016/j.jclepro.2020.120374.spa
dcterms.referencesRahbar, K., Mahmoud, S., Al-Dadah, R.K., Moazami, N., Mirhadizadeh, S.A., 2017. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 134, 135–155. http://dx.doi.org/10.1016/j.enconman.2016.12.023.spa
dcterms.referencesSánchez Villafana, E.D., Vargas Machuca Bueno, J.P., 2019. Thermoeconomic and environmental analysis and optimization of the supercritical CO2 cycle integration in a simple cycle power plant. Appl. Therm. Eng. 152, 1–12. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.052.spa
dcterms.referencesSara, H., Chalet, D., Cormerais, M., 2018. Different configurations of exhaust gas heat recovery in internal combustion engine: Evaluation on different driving cycles using numerical simulations. J. Therm. Sci. Eng. Appl. 10, 1–49. http://dx.doi.org/10.1115/1.4039304.spa
dcterms.referencesSarkar, J., 2009. Second law analysis of supercritical CO2 recompression Brayton cycle. Energy 34, 1172–1178. http://dx.doi.org/10.1016/j.energy.2009.04.030spa
dcterms.referencesShengjun, Z., Huaixin, W., Tao, G., 2011. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 88, 2740–2754. http://dx.doi.org/10.1016/j.apenergy.2011.02.034.spa
dcterms.referencesShi, L., Shu, G., Tian, H., Deng, S., 2018. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICEWHR). Renew. Sustain. Energy Rev. 92, 95–110. http://dx.doi.org/10.1016/ j.rser.2018.04.023.spa
dcterms.referencesSong, J., Loo, P., Teo, J., Markides, C.N., 2020. Thermo-economic optimization of organic rankine cycle (ORC) systems for geothermal power generation: A comparative study of system configurations. Front. Energy Res. 8, 1–14. http://dx.doi.org/10.3389/fenrg.2020.00006.spa
dcterms.referencesSong, J., song Li, X., dong Ren, X., wei Gu, C., 2018. Performance analysis and parametric optimization of supercritical carbon dioxide (s-CO2) cycle with bottoming Organic Rankine Cycle (ORC). Energy 143, 406–416. http: //dx.doi.org/10.1016/j.energy.2017.10.136.spa
dcterms.referencesSukumaran, S., Sudhakar, K., 2018. Performance analysis of solar powered airport based on energy and exergy analysis. Energy 149, 1000–1009. http://dx.doi. org/10.1016/j.energy.2018.02.095.spa
dcterms.referencesTeng, L., Xuan, Y., 2019. Design of a composite receiver for solar-driven supercritical CO2 Brayton cycle. J. CO2 Util. 32, 290–298. http://dx.doi.org/ 10.1016/j.jcou.2019.05.006.spa
dcterms.referencesThakar, R., Bhosle, S., Lahane, S., 2018. Design of heat exchanger for waste heat recovery from exhaust gas of diesel engine. Procedia Manuf. 20, 372–376. http://dx.doi.org/10.1016/j.promfg.2018.02.054spa
dcterms.referencesUusitalo, A., Ameli, A., Turunen-Saaresti, T., 2019. Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 167, 60–79. http://dx.doi.org/10.1016/j.energy.2018.10.181.spa
dcterms.referencesValencia, G., Fontalvo, A., Cárdenas, Y., Duarte, J., Isaza, C., 2019. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 12, http://dx.doi.org/10.3390/en12122378.spa
dcterms.referencesValencia, G., Fontalvo, A., Duarte Forero, J., 2021. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic rankine cycle: Thermo-economic and environmental footprint analysis. Appl. Therm. Eng. 182, 116109. http://dx.doi.org/10.1016/j.applthermaleng.2020.116109.spa
dcterms.referencesValencia Ochoa, G., Duarte Forero, J., Rojas, J.P., 2020. A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon 6, e04136. http://dx.doi.org/10.1016/j.heliyon.2020.e04136.spa
dcterms.referencesWhite, M.T., Oyewunmi, O.A., Chatzopoulou, M.A., Pantaleo, A.M., Haslam, A.J., Markides, C.N., 2018. Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for wasteheat recovery. Energy 161, 1181–1198. http://dx.doi.org/10.1016/j.energy. 2018.07.098.spa
dcterms.referencesWhite, M.T., Oyewunmi, O.A., Haslam, A.J., Markides, C.N., 2017. Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-γ Mie. Energy Convers. Manag. 150, 851–869. http://dx.doi.org/10.1016/j.enconman.2017.03.048.spa
dcterms.referencesWhite, M.T., Sayma, A.I., 2019. Simultaneous cycle optimization and fluid selection for ORC systems accounting for the effect of the operating conditions on turbine efficiency. Front. Energy Res. 7, http://dx.doi.org/10.3389/fenrg. 2019.00050.spa
dcterms.referencesXia, X.X., Wang, Z.Q., Zhou, N.J., Hu, Y.H., Zhang, J.P., Chen, Y., 2020. Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Appl. Therm. Eng. 171, 115028. http://dx.doi.org/10.1016/j.applthermaleng.2020.115028.spa
dcterms.referencesYoung, D., Gibson, S.C., Bandhauer, T.M., 2018. Working fluid selection and technoeconomic optimization of a turbocompression cooling system. J. Therm. Sci. Eng. Appl. 10, http://dx.doi.org/10.1115/1.4041197.spa
dcterms.referencesZare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 105, 127–138. http://dx.doi.org/10.1016/j.enconman.2015.07.073.spa
dcterms.referencesZhang, J., Qin, K., Li, D., Luo, K., Dang, J., 2020. Potential of Organic Rankine Cycles for unmanned underwater vehicles. Energy 192, 116559. http://dx. doi.org/10.1016/j.energy.2019.116559.spa
dcterms.referencesZhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., Liu, L., Ling, P., Zhong, W., Xiang, J., 2018. Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy Convers. Manag. 173, 348–358. http: //dx.doi.org/10.1016/j.enconman.2018.07.096.spa
dc.identifier.doihttps://doi.org/10.1016/j.egyr.2023.03.102
dc.relation.citationeditionVol.9 (2023)spa
dc.relation.citationendpage4455spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage4437spa
dc.relation.citationvolume9spa
dc.relation.ispartofjournalEnergy Reportsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).