Mostrar el registro sencillo del ítem

dc.contributor.authorRojas Suárez, J P
dc.contributor.authorPabón León, J A
dc.contributor.authorOrjuela Abril1, M S
dc.date.accessioned2022-12-21T03:45:09Z
dc.date.available2022-12-21T03:45:09Z
dc.date.issued2021-08-26
dc.identifier.issn17426588spa
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6687
dc.description.abstractInternal combustion engines demand advanced monitoring methodologies to promote efficient operation; particularly, the combustion pressure plays a central role in the overall performance, which promotes the utilization of transducers that hinders. Therefore, the present study introduces an acoustic emission methodology that serves for indirect combustion pressure measurements. Accordingly, the compound methodology integrates the Hilbert transform and the complex cepstrum using neural networks to accomplish pressure signal reconstruction. Results demonstrated that the proposed methodology featured robust performance while estimating pressure signals as it mitigates the combined noise effect produced by variations in engine speed, engine load, and fuel type. Moreover, the reconstructed signal facilitated the determination of key performance parameters such as peak pressure, pressure timing, and effective mean pressure. Relative error amounted to less than 10%, which ratified the robustness of the indirect pressure measurements. In conclusion, acoustic signal techniques represent an adequate approach to estimate the combustion pressure at variable engine conditions.eng
dc.format.extent7 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights© Copyright 2021 Elsevier B.V., All rights reserved.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/2102/1/012014/pdfspa
dc.titleAcoustic emissions in the valuation of the combustion chamber pressure of an engineeng
dc.typeArtículo de revistaspa
dcterms.referencesConsuegra F, Bula A, Guillín W, Sánchez J, Duarte Forero J 2019 Energies 12(8) 1437spa
dcterms.referencesValencia Ochoa G, Isaza-Roldan C, Duarte Forero J 2020 Energies 13(6) 1317spa
dcterms.referencesValencia Ochoa G, Cárdenas Gutierrez J, Duarte Forero J 2020 Resources 9(1) 2spa
dcterms.referencesOrozco W, Acuña N, Duarte J 2019 International Review of Mechanical Engineering 13(7) 420spa
dcterms.referencesDuarte J, Garcia J, Jiménez J, Sanjuan M, Bula A, González J 2017 J. Energy Resour. Technol. 139(2) 022201spa
dcterms.referencesObregon L, Valencia G, Duarte Forero J 2019 International Review on Modelling and Simulations 12(4) 245spa
dcterms.referencesAlibaba M, Pourdarbani R, Manesh M H K, Valencia Ochoa G, Duare Forero J D 2020 Heliyon 6(4) e03758spa
dcterms.referencesDuarte Forero J, López Taborda J, Bula Silvera A 2019 International Review of Mechanical Engineering 13(1) 11spa
dcterms.referencesJafari M, Verma P, Bodisco T A, Zare A, Surawski N C, Borghesani P, Stevanovic S, Guo Y, Alroe J, Osuagwu C, Milic A, Miljevic B, Ristovski Z D, Brown R J 2019 Energy Convers. Manag. 201 112183spa
dcterms.referencesOrozco T, Herrera M, Duarte Forero J 2019 International Review on Modelling and Simulations 12(2) 72spa
dcterms.referencesSanchez De la Hoz J, Valencia G, Duarte Forero J 2019 International Review on Modelling and Simulations 12(4) 230spa
dcterms.referencesTrimby S, Dunne J F, Bennett C, Richardson D 2017 Int. J. Engine Res. 18(3) 256spa
dcterms.referencesDunne J F, Bennett C 2020 Int. J. Engine Res. 21(7) 1147spa
dcterms.referencesEl-Ghamry M, Steel J A, Reuben R L, Fog T L 2005 Mech. Syst. Signal Process. 19(4)751spa
dcterms.referencesAntoni J, Daniere J, Guillet F 2002 J. Sound Vib. 257(5) 815spa
dcterms.referencesHagan M T, Menhaj M B 1994 IEEE Transactions on Neural Networks 5(6) 989spa
dc.contributor.corporatenameIOP Publishing Ltdspa
dc.identifier.doi10.1088/1742-6596/2102/1/012014
dc.relation.citationissue012014spa
dc.relation.citationvolume2102spa
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalAcoustic-emissionseng
dc.subject.proposalAdvanced monitoringeng
dc.subject.proposalChamber pressureeng
dc.subject.proposalCombustion pressureeng
dc.subject.proposalComplex cepstrumeng
dc.subject.proposalHilbert transformeng
dc.subject.proposalMonitoring methodologieseng
dc.subject.proposalNeural-networkseng
dc.subject.proposalPerformanceeng
dc.subject.proposalPressure signaleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© Copyright 2021 Elsevier B.V., All rights reserved.
Excepto si se señala otra cosa, la licencia del ítem se describe como © Copyright 2021 Elsevier B.V., All rights reserved.