dc.contributor.author | Rojas Suárez, J P | |
dc.contributor.author | Pabón León, J A | |
dc.contributor.author | Orjuela Abril1, M S | |
dc.date.accessioned | 2022-12-21T03:45:09Z | |
dc.date.available | 2022-12-21T03:45:09Z | |
dc.date.issued | 2021-08-26 | |
dc.identifier.issn | 17426588 | spa |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6687 | |
dc.description.abstract | Internal combustion engines demand advanced monitoring methodologies to promote efficient operation; particularly, the combustion pressure plays a central role in the overall performance, which promotes the utilization of transducers that hinders. Therefore, the present study introduces an acoustic emission methodology that serves for indirect combustion pressure measurements. Accordingly, the compound methodology integrates the Hilbert transform and the complex cepstrum using neural networks to accomplish pressure signal
reconstruction. Results demonstrated that the proposed methodology featured robust performance while estimating pressure signals as it mitigates the combined noise effect produced by variations in engine speed, engine load, and fuel type. Moreover, the reconstructed signal
facilitated the determination of key performance parameters such as peak pressure, pressure timing, and effective mean pressure. Relative error amounted to less than 10%, which ratified the robustness of the indirect pressure measurements. In conclusion, acoustic signal techniques represent an adequate approach to estimate the combustion pressure at variable engine conditions. | eng |
dc.format.extent | 7 paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights | © Copyright 2021 Elsevier B.V., All rights reserved. | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/2102/1/012014/pdf | spa |
dc.title | Acoustic emissions in the valuation of the combustion chamber pressure of an engine | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Consuegra F, Bula A, Guillín W, Sánchez J, Duarte Forero J 2019 Energies 12(8) 1437 | spa |
dcterms.references | Valencia Ochoa G, Isaza-Roldan C, Duarte Forero J 2020 Energies 13(6) 1317 | spa |
dcterms.references | Valencia Ochoa G, Cárdenas Gutierrez J, Duarte Forero J 2020 Resources 9(1) 2 | spa |
dcterms.references | Orozco W, Acuña N, Duarte J 2019 International Review of Mechanical Engineering 13(7) 420 | spa |
dcterms.references | Duarte J, Garcia J, Jiménez J, Sanjuan M, Bula A, González J 2017 J. Energy Resour. Technol. 139(2) 022201 | spa |
dcterms.references | Obregon L, Valencia G, Duarte Forero J 2019 International Review on Modelling and Simulations 12(4) 245 | spa |
dcterms.references | Alibaba M, Pourdarbani R, Manesh M H K, Valencia Ochoa G, Duare Forero J D 2020 Heliyon 6(4) e03758 | spa |
dcterms.references | Duarte Forero J, López Taborda J, Bula Silvera A 2019 International Review of Mechanical Engineering 13(1) 11 | spa |
dcterms.references | Jafari M, Verma P, Bodisco T A, Zare A, Surawski N C, Borghesani P, Stevanovic S, Guo Y, Alroe J, Osuagwu C, Milic A, Miljevic B, Ristovski Z D, Brown R J 2019 Energy Convers. Manag. 201 112183 | spa |
dcterms.references | Orozco T, Herrera M, Duarte Forero J 2019 International Review on Modelling and Simulations 12(2) 72 | spa |
dcterms.references | Sanchez De la Hoz J, Valencia G, Duarte Forero J 2019 International Review on Modelling and Simulations 12(4) 230 | spa |
dcterms.references | Trimby S, Dunne J F, Bennett C, Richardson D 2017 Int. J. Engine Res. 18(3) 256 | spa |
dcterms.references | Dunne J F, Bennett C 2020 Int. J. Engine Res. 21(7) 1147 | spa |
dcterms.references | El-Ghamry M, Steel J A, Reuben R L, Fog T L 2005 Mech. Syst. Signal Process. 19(4)751 | spa |
dcterms.references | Antoni J, Daniere J, Guillet F 2002 J. Sound Vib. 257(5) 815 | spa |
dcterms.references | Hagan M T, Menhaj M B 1994 IEEE Transactions on Neural Networks 5(6) 989 | spa |
dc.contributor.corporatename | IOP Publishing Ltd | spa |
dc.identifier.doi | 10.1088/1742-6596/2102/1/012014 | |
dc.relation.citationissue | 012014 | spa |
dc.relation.citationvolume | 2102 | spa |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Acoustic-emissions | eng |
dc.subject.proposal | Advanced monitoring | eng |
dc.subject.proposal | Chamber pressure | eng |
dc.subject.proposal | Combustion pressure | eng |
dc.subject.proposal | Complex cepstrum | eng |
dc.subject.proposal | Hilbert transform | eng |
dc.subject.proposal | Monitoring methodologies | eng |
dc.subject.proposal | Neural-networks | eng |
dc.subject.proposal | Performance | eng |
dc.subject.proposal | Pressure signal | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |