Mostrar el registro sencillo del ítem

dc.contributor.authorVergel Ortega, Mawency
dc.contributor.authorVALENCIA OCHOA, GUILLERMO
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2022-12-06T13:17:30Z
dc.date.available2022-12-06T13:17:30Z
dc.date.issued2021-08
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6648
dc.description.abstractThis study investigates an alternative fuel methodology for diesel engines that focus on the influence of ethanol as an additive agent in biodiesel blends derived from the industrial liquid waste of palm oil and sunflower oil residues. Specifically, the study addresses relevant aspects of the combustion performance and emissions characteristics in a single-cylinder diesel engine. For the experimental development, four different fuels were tested: commercial diesel, a blend of biodiesel formed from the residual material of palm oil and sunflower oil (PB3SB2), two blends with an addition of 2%, and 4% ethanol in the biodiesel produced (PB3SB2E2 and PB3SB2E4). The engine operated under nine different operation modes following international testing methodologies. Results indicated that incorporating ethanol in the PB3SB2 biodiesel blend improves thermal efficiency by 0.8%. Increasing the ethanol mixing ratio to 4% provides a further efficiency improvement of up to 1.2%. The emissions analysis showed that the addition of ethanol below 4% in the biodiesel blend facilitates the minimization of pollutant levels of CO, CO2, NOx, HC, and smoke opacity compared to the biodiesel formed by the two residual oils (PB3SB2). Overall, ethanol incorporation reduced emissions levels between 7.5 and 13.87% compared to PB3SB2. In conclusion, integrating biodiesel and ethanol as additive agent emerges as a promising alternative to promote a reliable and sustainable operation in diesel engines.eng
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCase Studies in Thermal Engineeringspa
dc.relation.ispartofCase Studies in Thermal Engineering. Vol.26 N°(2021)
dc.rightsThis is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2214157X21003531spa
dc.titleExperimental study of emissions in single-cylinder diesel engine operating with diesel-biodiesel blends of palm oil-sunflower oil and ethanoleng
dc.typeArtículo de revistaspa
dcterms.referencesB. Chen, L. Zhang, J. Han, An investigation on the effect of intake air humidification on the thermal balance of a turbocharged gasoline direct injection engine, Case Stud. Therm. Eng. 21 (2020) 100719, https://doi.org/10.1016/j.csite.2020.100719.spa
dcterms.referencesG.A. Diaz, J.O. Duarte, J. Garcia, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, Maximum power from fluid flow by applying the first and second laws of thermodynamics, J. Energy Resour. Technol. Trans. ASME. 139 (2017), https://doi.org/10.1115/1.4035021.spa
dcterms.referencesG. Valencia Ochoa, C. Acevedo Penaloza, ˜ J. Duarte Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine Cycle system for a natural gas engine, Energies 12 (2019) 4165, https://doi.org/10.3390/en12214165.spa
dcterms.referencesA. Shafieian, M. Khiadani, A multipurpose desalination, cooling, and air-conditioning system powered by waste heat recovery from diesel exhaust fumes and cooling water, Case Stud. Therm. Eng. 21 (2020) 100702, https://doi.org/10.1016/j.csite.2020.100702.spa
dcterms.referencesG.V. Ochoa, C. Isaza-Roldan, J. Duarte Forero, Economic and exergo-advance analysis of a waste heat recovery system based on regenerative organic rankine Cycle under organic fluids with low global warming potential, Energies 13 (2020) 1317, https://doi.org/10.3390/en13061317.spa
dcterms.referencesDuarte Valencia, Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (2019) 4017, https://doi.org/10.3390/app9194017.spa
dcterms.referencesJ. Duarte, J. Garcia, J. Jim´enez, M.E. Sanjuan, A. Bula, J. Gonz´ alez, Auto-ignition control in spark-ignition engines using internal model control structure, J. Energy Resour. Technol. Trans. ASME. 139 (2017), https://doi.org/10.1115/1.4034026.spa
dcterms.referencesP. Saravanan, N.M. Kumar, M. Ettappan, R. Dhanagopal, J. Vishnupriyan, Effect of exhaust gas re-circulation on performance, emission and combustion characteristics of ethanol-fueled diesel engine, Case Stud. Therm. Eng. 20 (2020) 100643, https://doi.org/10.1016/j.csite.2020.100643.spa
dcterms.referencesG.V. Ochoa, C. Isaza-Roldan, J.D. Forero, A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine, Heliyon 5 (2019), https://doi.org/10.1016/j.heliyon.2019.e02700 e02700.spa
dcterms.referencesB. Hernandez-Comas, ´ D. Maestre-Cambronel, C. Pardo-García, M.D.S. Fonseca-Vigoya, J. Pabon-Le ´ on, ´ Influence of compression rings on the dynamic characteristics and sealing capacity of the combustion chamber in diesel engines, Lubricants 9 (2021) 25, https://doi.org/10.3390/lubricants9030025.spa
dcterms.referencesF. Consuegra, A. Bula, W. Guillín, J. Sanchez, ´ J. Duarte Forero, Instantaneous in-cylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines, Energies 12 (2019) 1437, https://doi.org/10.3390/en12081437.spa
dcterms.referencesK. Zahan, M. Kano, Biodiesel production from palm oil, its by-products, and mill effluent: a review, Energies 11 (2018) 2132, https://doi.org/10.3390/ en11082132.spa
dcterms.referencesR. Escobar-Yonoff, D. Maestre-Cambronel, S. Charry, A. Rincon-Montenegro, ´ I. Portnoy, Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation, Heliyon 7 (2021), https://doi.org/10.1016/j.heliyon.2021.e06506 e06506.spa
dcterms.referencesA. Dhar, A.K. Agarwal, Effect of Karanja biodiesel blend on engine wear in a diesel engine, Fuel 134 (2014) 81–89, https://doi.org/10.1016/j.fuel.2014.05.039.spa
dcterms.referencesN. Kumar, Varun, S.R. Chauhan, Performance and emission characteristics of biodiesel from different origins: a review, Renew. Sustain. Energy Rev. 21 (2013) 633–658, https://doi.org/10.1016/j.rser.2013.01.006.spa
dcterms.referencesB. Sajjadi, A.A.A. Raman, H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models, Renew. Sustain. Energy Rev. 63 (2016) 62–92, https://doi.org/10.1016/j.rser.2016.05.035.spa
dcterms.referencesA.K. Yadav, M.E. Khan, A.M. Dubey, A. Pal, Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel, Case Stud. Therm. Eng. 8 (2016) 236–244, https://doi.org/10.1016/j.csite.2016.08.001.spa
dcterms.referencesH.J. Berchmans, S. Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids, Bioresour. Technol. 99 (2008) 1716–1721, https://doi.org/10.1016/j.biortech.2007.03.051.spa
dcterms.referencesP.G.I. Thushari, S. Babel, Biodiesel production from waste palm oil using palm empty fruit bunch-derived novel carbon acid catalyst, J. Energy Resour. Technol. 140 (2018), https://doi.org/10.1115/1.4038380.spa
dcterms.referencesS. Sumathi, S.P. Chai, A.R. Mohamed, Utilization of oil palm as a source of renewable energy in Malaysia, Renew. Sustain. Energy Rev. 12 (2008) 2404–2421, https://doi.org/10.1016/j.rser.2007.06.006.spa
dcterms.referencesJ.C. Kurnia, S.V. Jangam, S. Akhtar, A.P. Sasmito, A.S. Mujumdar, Advances in biofuel production from oil palm and palm oil processing wastes: a review, Biofuel Res. J. 3 (2016) 332–346, https://doi.org/10.18331/BRJ2016.3.1.3.spa
dcterms.referencesH.J. Cho, J.-K. Kim, H.-J. Cho, Y.-K. Yeo, Techno-economic study of a biodiesel production from palm fatty acid distillate, Ind. Eng. Chem. Res. (2012), https:// doi.org/10.1021/ie301651b, 121227123655001.spa
dcterms.referencesW. Liew, K. Muda, M. Azraai, A. Affam, S. Loh, Agro-industrial waste sustainable management – a potential source of economic benefits to palm oil mills in Malaysia, J. Urban Environ. Eng. 11 (2017) 108–118, https://doi.org/10.4090/juee.2017.v11n1.108118.spa
dcterms.referencesM.A. Ahmad Farid, M.A. Hassan, Y.H. Taufiq-Yap, M.L. Ibrahim, M.R. Othman, A.A.M. Ali, Y. Shirai, Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst, Renew. Energy 114 (2017) 638–643, https://doi.org/10.1016/j.renene.2017.07.064.spa
dcterms.referencesI.K. Hong, H. Jeon, H. Kim, S.B. Lee, Preparation of waste cooking oil based biodiesel using microwave irradiation energy, J. Ind. Eng. Chem. 42 (2016) 107–112, https://doi.org/10.1016/j.jiec.2016.07.035.spa
dcterms.referencesS.S. Lam, Y.F. Tsang, P.N.Y. Yek, R.K. Liew, M.S. Osman, W. Peng, W.H. Lee, Y.-K. Park, Co-processing of oil palm waste and waste oil via microwave cotorrefaction: a waste reduction approach for producing solid fuel product with improved properties, Process Saf. Environ. Protect. 128 (2019) 30–35, https:// doi.org/10.1016/j.psep.2019.05.034.spa
dcterms.referencesM. Elkelawy, H. Alm-Eldin Bastawissi, K.K. Esmaeil, A.M. Radwan, H. Panchal, K.K. Sadasivuni, D. Ponnamma, R. Walvekar, Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends, Fuel 255 (2019) 115791, https://doi.org/10.1016/j.fuel.2019.115791.spa
dcterms.referencesJ.F. Costa, M.F. Almeida, M.C.M. Alvim-Ferraz, J.M. Dias, Biodiesel production using oil from fish canning industry wastes, Energy Convers. Manag. 74 (2013) 17–23, https://doi.org/10.1016/j.enconman.2013.04.032.spa
dcterms.referencesV.F. De Almeida, P.J. García-Moreno, A. Guadix, E.M. Guadix, Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: optimization of fuel properties, Fuel Process. Technol. 133 (2015) 152–160, https://doi.org/10.1016/j.fuproc.2015.01.041.spa
dcterms.referencesS.M. Krishna, P. Abdul Salam, M. Tongroon, N. Chollacoop, Performance and emission assessment of optimally blended biodiesel-diesel-ethanol in diesel engine generator, Appl. Therm. Eng. 155 (2019) 525–533, https://doi.org/10.1016/j.applthermaleng.2019.04.012.spa
dcterms.referencesS.A. Shahir, H.H. Masjuki, M.A. Kalam, A. Imran, A.M. Ashraful, Performance and emission assessment of diesel–biodiesel–ethanol/bioethanol blend as a fuel in diesel engines: a review, Renew. Sustain. Energy Rev. 48 (2015) 62–78, https://doi.org/10.1016/j.rser.2015.03.049.spa
dcterms.referencesP. Kwanchareon, A. Luengnaruemitchai, S. Jai-In, Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine, Fuel 86 (2007) 1053–1061, https://doi.org/10.1016/j.fuel.2006.09.034.spa
dcterms.referencesS.H. Park, S.H. Yoon, C.S. Lee, HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system, Appl. Energy 107 (2013) 81–88, https://doi.org/10.1016/j.apenergy.2013.02.015.spa
dcterms.referencesM. Heseding, P. Daskalopoulos, Exhaust Emission Legislation-Diesel-And Gas Engines, VDMA, Frankfurt Am Main, 2006spa
dcterms.referencesM.N. Nabi, A. Zare, F.M. Hossain, T.A. Bodisco, Z.D. Ristovski, R.J. Brown, A parametric study on engine performance and emissions with neat diesel and dieselbutanol blends in the 13-Mode European Stationary Cycle, Energy Convers. Manag. 148 (2017) 251–259, https://doi.org/10.1016/j.enconman.2017.06.001.spa
dcterms.referencesD. Das, A. Kumar, A. Yadav, Evaluation of performance, emission and combustion characteristics of a CI engine fueled with karanja biodiesel and diethyl ether blends, Biofuels 9 (2018) 89–94, https://doi.org/10.1080/17597269.2016.1257318.spa
dcterms.referencesH. Kuszewski, Effect of adding 2-ethylhexyl nitrate cetane improver on the autoignition properties of ethanol–diesel fuel blend – investigation at various ambient gas temperatures, Fuel 224 (2018) 57–67, https://doi.org/10.1016/j.fuel.2018.03.084.spa
dcterms.referencesS.K. Kandasamy, A.S. Selvaraj, T.K.R. Rajagopal, Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics, Renew. Energy 141 (2019) 411–419, https://doi.org/10.1016/j.renene.2019.04.039.spa
dcterms.referencesH. Venu, V. Madhavan, Influence of diethyl ether (DEE) addition in ethanol-biodiesel-diesel (EBD) and methanol-biodiesel-diesel (MBD) blends in a diesel engine, Fuel 189 (2017) 377–390, https://doi.org/10.1016/j.fuel.2016.10.101.spa
dcterms.referencesC. Swaminathan, J. Sarangan, Performance and exhaust emission characteristics of a CI engine fueled with biodiesel (fish oil) with DEE as additive, Biomass Bioenergy 39 (2012) 168–174, https://doi.org/10.1016/j.biombioe.2012.01.001.spa
dcterms.referencesA. Paul, R. Panua, D. Debroy, An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Diesel-ethanolbiodiesel blends, Energy 141 (2017) 839–852, https://doi.org/10.1016/j.energy.2017.09.137.spa
dcterms.referencesA. Paul, R. Panua, D. Debroy, P. Kumar Bose, A performance-emission tradeoff study of a CI engine fueled by compressed natural gas (CNG)/diesel-ethanolPPME blend combination, Environ. Prog. Sustain. Energy 35 (2016) 517–530, https://doi.org/10.1002/ep.12223.spa
dcterms.referencesM.K. Yesilyurt, M. Aydin, Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends, Energy Convers. Manag. (2020), https://doi.org/10.1016/j.enconman.2019.112355.spa
dc.contributor.corporatenameCase Studies in Thermal Engineeringspa
dc.identifier.doihttps://doi.org/10.1016/j.csite.2021.101190
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.26 N°(2021)spa
dc.relation.citationendpage12spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume26spa
dc.relation.citesVergel-Ortega, M., Valencia-Ochoa, G., & Duarte-Forero, J. (2021). Experimental study of emissions in single-cylinder diesel engine operating with diesel-biodiesel blends of palm oil-sunflower oil and ethanol. Case Studies in Thermal Engineering, 26, 101190.
dc.relation.ispartofjournalCase Studies in Thermal Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalDieseleng
dc.subject.proposalBiodiesel blendseng
dc.subject.proposalEthanoleng
dc.subject.proposalEmissionseng
dc.subject.proposalEngine performanceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).