Mostrar el registro sencillo del ítem

dc.contributor.authorPardo García, Carlos Eduardo
dc.contributor.authorPABON LEON, JHON ANTUNY
dc.contributor.authorFONSECA VIGOYA, MARLEN DEL SOCORRO
dc.date.accessioned2022-12-05T16:29:16Z
dc.date.available2022-12-05T16:29:16Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6641
dc.description.abstractIn this investigation, a study of the tribological and dynamic characteristics present in the compression ring is executed for different engine conditions. A series of numerical simulations has been carried out using the OpenFOAM software for the study. The simulation conditions have been based on the parameters measured on a diesel engine test bench. Different ranges of rotation speed, load, and lubrication oil temperature have been established for the analysis. The results show that the parameters of rotation speed and engine load significantly influence the tribological and dynamic conditions of the piston compression ring. An increase of 425 rpm and 136 Nm in the rotational speed and load of the engine causes an increase of 13% and 34% in the power loss due to friction. The Top Dead Center and the Bottom Dead Center are the locations most prone to experience critical wear and tear. Increasing the lubricating oil temperature increases the maximum friction force by 9%. In general, the proposed methodology allows for establishing a direct relationship between the operating conditions and the tribological characteristics in the compression ring that directly affect the efficiency and useful life of the engine.eng
dc.format.extent07 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Review of Mechanical Engineeringspa
dc.relation.ispartofInternational Review of Mechanical Engineering. Vol.15 N°.11 (2021)
dc.rightsCopyright © 2021 Praise Worthy Prize - All rights reserved.eng
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85126524641&doi=10.15866%2fireme.v15i11.21461&partnerID=40&md5=f8c62766adc8ed5617bc113b30374106spa
dc.titleAnalysis of the Tribological and Dynamic Characteristics of the Piston Compression Ring Under Different Engine Operating Conditionseng
dc.typeArtículo de revistaspa
dcterms.referencesA. Gurt and M. Khonsari, The use of entropy in modeling the mechanical degradation of grease, Lubricants, vol. 7, no. 10, p. 82, 2019. https://doi.org/10.3390/lubricants7100082spa
dcterms.referencesW. W. F. Chong, S. H. Hamdan, K. J. Wong, and S. Yusup, Modelling Transitions in Regimes of Lubrication for Rough Surface Contact, Lubricants, vol. 7, no. 9, p. 77, 2019. https://doi.org/10.3390/lubricants7090077spa
dcterms.referencesShabanov, A., Galyshev, Y., Zaitsev, A., Rumyantsev, V., Sidorov, A., Tribological Analysis of 'Piston-Cylinder Liner' Pair in High-Powered Diesel Engine, (2020) International Review of Mechanical Engineering (IREME), 14 (2), pp. 85-91. https://doi.org/10.15866/ireme.v14i2.18241spa
dcterms.referencesBouharoun, S., Influence of Water Content on the Tribological Behavior at Concrete/Wall Interface - Role of Cement Grains, (2018) International Journal of Earthquake Engineering and Hazard Mitigation (IREHM), 6 (3), pp. 96-102.spa
dcterms.referencesSantoso, A., Semin, S., Sampurno, B., Cahyono, B., Zaman, M., New Development of Piston Crown for Dual Fuel Diesel Engine to Improve Efficiency and Reduce NOx Emissions: a Review, (2020) International Journal on Engineering Applications (IREA), 8 (1), pp. 1-7. https://doi.org/10.15866/irea.v8i1.17449spa
dcterms.referencesSemin, S., Zaman, M., Santoso, A., Effect of Compression Ratio Improvement on the Performance of Dual Fuel Engine, (2019) International Review of Mechanical Engineering (IREME), 13 (3), pp. 142-147. https://doi.org/10.15866/ireme.v13i3.15854spa
dcterms.referencesJ. D. Forero, G. V. Ochoa, and W. P. Alvarado, Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine, Lubricants, vol. 8, no. 11, pp. 97-128, 2020. https://doi.org/10.3390/lubricants8110097spa
dcterms.referencesB. Hernández-Comas, D. Maestre-Cambronel, C. Pardo-García, M. D. S. Fonseca-Vigoya, and J. Pabón-León, Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines, Lubricants, vol. 9, no. 3, pp. 25-57, 2021. https://doi.org/10.3390/lubricants9030025spa
dcterms.referencesC. Cheng, A. Kharazmi, H. Schock, R. Wineland, and L. Brombolich, Three-dimensional piston ring--cylinder bore contact modeling, Journal of Engineering for Gas Turbines and Power, vol. 137, no. 11, 2015. https://doi.org/10.1115/1.4030349spa
dcterms.referencesC. Kirner, J. Halbhuber, B. Uhlig, A. Oliva, S. Graf, and G. Wachtmeister, Experimental and simulative research advances in the piston assembly of an internal combustion engine, Tribology International, vol. 99, pp. 159-168, 2016. https://doi.org/10.1016/j.triboint.2016.03.005spa
dcterms.referencesZ.-W. Guo, C.-Q. Yuan, X.-Q. Bai, and X.-P. Yan, Experimental study on wear performance and oil film characteristics of surface textured cylinder liner in marine diesel engine, Chinese Journal of Mechanical Engineering, vol. 31, no. 1, pp. 1-10, 2018. https://doi.org/10.1186/s10033-018-0252-3spa
dcterms.referencesT. Chaudhari and B. Sutaria, Investigation of friction characteristics in segmented piston ring liner assembly of IC engine, Perspectives in Science, vol. 8, pp. 599-602, 2016. https://doi.org/10.1016/j.pisc.2016.06.032spa
dcterms.referencesE. Gopi, M. Saleem, S. Chandan, and A. Nema, Thermal and static analysis of engine piston rings, International Journal of Ambient Energy, pp. 1-5, 2019. https://doi.org/10.1080/01430750.2019.1636875spa
dcterms.referencesA. Kashyap, A. P. Harsha, H. C. Barshilia, V. Bonu, P. Kumar V, and R. K. Singh, Study of Tribological Properties of Multilayer Ti/TiN Coating Containing Stress Absorbing Layers, Journal of Tribology, vol. 142, no. 11, p. 111401, 2020. https://doi.org/10.1115/1.4047195spa
dcterms.referencesM. K. Ahmed Ali, H. Xianjun, R. Fiifi Turkson, and M. Ezzat, An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 230, no. 4, pp. 329-349, 2016. https://doi.org/10.1177/1464419315605922spa
dcterms.referencesR. Turnbull, N. Dolatabadi, R. Rahmani, and H. Rahnejat, An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines, Tribology International, vol. 142, p. 105991, 2020. https://doi.org/10.1016/j.triboint.2019.105991spa
dcterms.referencesM. K. A. Ali, H. Xianjun, L. Mai, C. Qingping, R. F. Turkson, and C. Bicheng, Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives, Tribology International, vol. 103, pp. 540-554, 2016. https://doi.org/10.1016/j.triboint.2016.08.011spa
dcterms.referencesC. Zhang et al., A free-piston linear generator control strategy for improving output power, Energies, vol. 11, no. 1, p. 135, 2018. https://doi.org/10.3390/en11010135spa
dcterms.referencesH. Aoki, K. Hayakawa, and N. Suda, Numerical analysis on effect of surface asperity of piston skirt on lubrication performance, Procedia Manufacturing, vol. 15, pp. 496-503, 2018. https://doi.org/10.1016/j.promfg.2018.07.259spa
dcterms.referencesM. Alrbai, M. Robinson, and N. Clark, Multi cycle modeling, simulating and controlling of a free piston engine with electrical generator under HCCI combustion conditions, Combustion Science and Technology, vol. 192, no. 10, pp. 1825-1849, 2020. https://doi.org/10.1080/00102202.2019.1627340spa
dcterms.referencesZ. Zhang, H. Feng, and Z. Zuo, Numerical investigation of a free-piston hydrogen-gasoline engine linear generator, Energies, vol. 13, no. 18, p. 4685, 2020. https://doi.org/10.3390/en13184685spa
dcterms.referencesD. N. Vu and O. Lim, Piston motion control for a dual free piston linear generator: predictive-fuzzy logic control approach, Journal of Mechanical Science and Technology, vol. 34, no. 11, pp. 4785-4795, 2020. https://doi.org/10.1007/s12206-020-1035-1spa
dcterms.referencesJ. Lu, Z. Xu, and L. Liu, Compression Ratio Control of an Opposed-Piston Free-Piston Engine Generator Based on Artificial Neural Networks, IEEE Access, vol. 8, pp. 107865-107875, 2020. https://doi.org/10.1109/ACCESS.2020.3001273spa
dcterms.referencesD. Dowson and G. R. Higginson, A Numerical Solution to the Elasto-Hydrodynamic Problem, Journal of Mechanical Engineering Science, vol. 1, no. 1, pp. 6-15, 1959. https://doi.org/10.1243/JMES_JOUR_1959_001_004_02spa
dcterms.referencesL. Houpert, New Results of Traction Force Calculations in Elastohydrodynamic Contacts, Journal of Tribology, vol. 107, no. 2, pp. 241-245, 1985. https://doi.org/10.1115/1.3261033spa
dcterms.referencesE. Köhler and R. Flierl, Internal combustion engines: engine mechanics, calculation and design of the reciprocating engine. Springer-Verlag, 2007.spa
dcterms.referencesM. Theaker, R. Rahmani, and H. Rahnejat, Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation, in ASME 2012 Internal Combustion Engine Division Spring Technical Conference. ASME 2012 Internal Combustion Engine Division Spring Technical Conference, 2012, pp. 885-892. https://doi.org/10.1115/ICES2012-81021spa
dcterms.referencesISUZU MOTORS LIMITED, Engine specifications - ISUZU power solutions, 2008.spa
dcterms.referencesP. G. Nikolakopoulos, Simulation of deposits effect on cylinder liner and influence on new and worn compression ring of a turbocharged DI engine, Simulation Modelling Practice and Theory, vol. 106, p. 102195, 2021. https://doi.org/10.1016/j.simpat.2020.102195spa
dcterms.referencesOrjuela, S., Valencia, G., Duarte Forero, J., Computational Fluid Dynamics Study of Blow-By in Light Aircraft Diesel Engines, (2020) International Review of Aerospace Engineering (IREASE), 13 (6), pp. 208-216. https://doi.org/10.15866/irease.v13i6.18586spa
dc.contributor.corporatenameInternational Review of Mechanical Engineeringspa
dc.identifier.doihttps://doi.org/10.15866/ireme.v15i11.21461
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol.15 N°.11. (2021)spa
dc.relation.citationendpage597spa
dc.relation.citationissue11 (2021)spa
dc.relation.citationstartpage591spa
dc.relation.citationvolume15spa
dc.relation.citesPardo García, C., Pabon, J., Fonseca Vigoya, M., Analysis of the Tribological and Dynamic Characteristics of the Piston Compression Ring Under Different Engine Operating Conditions, (2021) International Review of Mechanical Engineering (IREME), 15 (11), pp. 591-597.doi:https://doi.org/10.15866/ireme.v15i11.21461
dc.relation.ispartofjournalInternational Review of Mechanical Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalCFDeng
dc.subject.proposalCompression Ringeng
dc.subject.proposalFriction Forceeng
dc.subject.proposalOil Film Thicknesseng
dc.subject.proposalPower Losseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem