Show simple item record

dc.contributor.authorPardo García, Carlos Eduardo
dc.contributor.authorPABON LEON, JHON ANTUNY
dc.contributor.authorFONSECA VIGOYA, MARLEN DEL SOCORRO
dc.date.accessioned2022-12-05T15:59:15Z
dc.date.available2022-12-05T15:59:15Z
dc.date.issued2021-04
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6639
dc.description.abstractIn this study, a comparison between the use of hydrogen and a mixture of ethylene-hydrogen-acetylene as fuels is made in order to evaluate the characteristics of the detonation wave in a rotating detonation combustor. For the experimental development, an annular combustor, which has been connected to a supply of air, fuel, and hydrogen, has been used. The air and the type of fuel have been injected separately into the combustion chamber. The measurement of key parameters involves the use of ionization probes and pressure sensors, which have been located in the body of the combustion chamber. The results obtained indicate that hydrogen can reach an average pressure in the detonation wave 37% higher compared to the fuel mixture (ethylene-hydrogen-acetylene). For hydrogen, the equivalency ratio range is 38% higher compared to the fuel mixture. Therefore, the use of fuel mixtures is in a more limited operating range. The study of the detonation wave velocity indicates that the mixture of fuel and hydrogen can reach 68% and 93% of its ideal wave detonation velocity. However, in terms of height, both types of fuels reach a wave height of 30 mm. In general, hydrogen has characteristics that are more favourable in its detonation wave.eng
dc.format.extent08 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Review of Aerospace Engineeringspa
dc.relation.ispartofInternational Review of Aerospace Engineering. Vol.14 N°.2. (2021)
dc.rightsCopyright © 2021 Praise Worthy Prize - All rights reserved.eng
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=irease&page=article&op=view&path%5B%5D=24915spa
dc.titleStudy of the detonation wave in a rotating detonation combustor using hydrogen and mixtures ethylene-acetyleneeng
dc.typeArtículo de revistaspa
dcterms.referencesS. M. Frolov, V. S. Aksenov, V. S. Ivanov, I. O. Shamshin, and A. E. Zangiev, Air-breathing pulsed detonation thrust module: Numerical simulations and firing tests, Aerospace Science and Technology, vol. 89, pp. 275–287, 2019. https://doi.org/10.1016/j.ast.2019.04.005spa
dcterms.referencesD. Kublik, J. Kindracki, and P. Wolański, Evaluation of wall heat loads in the region of detonation propagation of detonative propulsion combustion chambers, Applied Thermal Engineering, vol. 156, pp. 606–618, 2019. https://doi.org/10.1016/j.applthermaleng.2019.04.084spa
dcterms.referencesSamara, M., Vashishtha, A., Watanabe, Y., Suzuki, K., Flow-Field and Performance Study of Coaxial Supersonic Nozzles Operating in Hypersonic Environment, (2020) International Review of Aerospace Engineering (IREASE), 13 (1), pp. 25-39. https://doi.org/10.15866/irease.v13i1.18282spa
dcterms.referencesJ. Sun, J. Zhou, S. Liu, Z. Lin, and W. Lin, Effects of air injection throat width on a non-premixed rotating detonation engine, Acta Astronautica, vol. 159, pp. 189–198, 2019. https://doi.org/10.1016/j.actaastro.2019.03.067spa
dcterms.referencesH.-Y. Peng, W.-D. Liu, S.-J. Liu, H.-L. Zhang, and W.-Y. Zhou, Realization of methane-air continuous rotating detonation wave, Acta Astronautica, vol. 164, pp. 1–8, 2019. https://doi.org/10.1016/j.actaastro.2019.07.001spa
dcterms.referencesDuarte Forero, J., Lopez Taborda, L., Bula Silvera, A., Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications, (2019) International Review of Mechanical Engineering (IREME), 13 (1), pp. 11-20. https://doi.org/10.15866/ireme.v13i1.16690spa
dcterms.referencesG. Valencia Ochoa, J. Cárdenas Gutierrez, and J. Duarte Forero, Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine, Resources, vol. 9, no. 1, p. 2, 2020. https://doi.org/10.3390/resources9010002spa
dcterms.referencesG. Valencia Ochoa, C. Acevedo Peñaloza, and J. Duarte Forero, Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures, Energies, vol. 12, no. 24, p. 4643, 2019. https://doi.org/10.3390/en12244643spa
dcterms.referencesS. Miao, J. Zhou, S. Liu, and X. Cai, Formation mechanisms and characteristics of transition patterns in oblique detonations, Acta Astronautica, vol. 142, pp. 121–129, 2018. https://doi.org/10.1016/j.actaastro.2017.10.035spa
dcterms.referencesZ. Xia, H. Ma, C. Liu, C. Zhuo, and C. Zhou, Experimental investigation on the propagation mode of rotating detonation wave in plane-radial combustor, Experimental Thermal and Fluid Science, vol. 103, pp. 364–376, 2019. https://doi.org/10.1016/j.expthermflusci.2019.01.032spa
dcterms.referencesJ. T. Peace and F. K. Lu, Performance modeling of pulse detonation engines using the method of characteristics, Aerospace Science and Technology, vol. 88, pp. 51–64, 2019. https://doi.org/10.1016/j.ast.2019.03.015spa
dcterms.referencesF. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Continuous detonation of methane/hydrogen--air mixtures in an annular cylindrical combustor, Combustion, Explosion, and Shock Waves, vol. 54, no. 4, pp. 472–481, 2018. https://doi.org/10.1134/s0010508218040111spa
dcterms.referencesN. N. Smirnov, V. F. Nikitin, L. I. Stamov, E. V. Mikhalchenko, and V. V. Tyurenkova, Rotating detonation in a ramjet engine three-dimensional modeling, Aerospace Science and Technology, vol. 81, pp. 213–224, 2018. https://doi.org/10.1016/j.ast.2018.08.003spa
dcterms.referencesP. Wolański et al., Development of Gasturbine with Detonation Chamber, Detonation Control for Propulsion, pp. 23–37, 2018. https://doi.org/10.1007/978-3-319-68906-7_2spa
dcterms.referencesS. Zhou, H. Ma, Y. Ma, C. Zhou, D. Liu, and S. Li, Experimental study on a rotating detonation combustor with an axial-flow turbine, Acta Astronautica, vol. 151, pp. 7–14, 2018. https://doi.org/10.1016/j.actaastro.2018.05.047spa
dcterms.referencesJ.-M. Li, P.-H. Chang, L. Li, Y. Yang, C. J. Teo, and B. C. Khoo, Investigation of Injection Strategy for Liquid-Fuel Rotating Detonation Engine, in 2018 AIAA Aerospace Sciences Meeting, 2018. https://doi.org/10.2514/6.2018-0403spa
dcterms.referencesD. D. Chandar, B. Boppana, and V. Kumar, A Comparative Study of Different Overset Grid Solvers Between OpenFOAM, StarCCM+ and Ansys-Fluent, in 2018 AIAA Aerospace Sciences Meeting, 2018. https://doi.org/10.2514/6.2018-1564spa
dcterms.referencesOrozco, T., Herrera, M., Duarte Forero, J., CFD Study of Heat Exchangers Applied in Brayton Cycles: a Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid, (2019) International Review on Modelling and Simulations (IREMOS), 12 (2), pp. 72-82. https://doi.org/10.15866/iremos.v12i2.17221spa
dcterms.referencesOrozco, W., Acuña, N., Duarte Forero, J., Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System, (2019) International Review of Mechanical Engineering (IREME), 13 (7), pp. 420-426. https://doi.org/10.15866/ireme.v13i7.17389spa
dcterms.referencesDe la Hoz, J., Valencia, G., Duarte Forero, J., Reynolds Averaged Navier–Stokes Simulations of the Airflow in a Centrifugal Fan Using OpenFOAM, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 230-239. https://doi.org/10.15866/iremos.v12i4.17802spa
dcterms.referencesObregon, L., Valencia, G., Duarte Forero, J., Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 245-252. https://doi.org/10.15866/iremos.v12i4.18009spa
dcterms.referencesF. Consuegra, A. Bula, W. Guillín, J. Sánchez, and J. Duarte Forero, Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines, Energies, vol. 12, no. 8, p. 1437, 2019. https://doi.org/10.3390/en12081437spa
dcterms.referencesJ. Duarte, J. Garcia, J. Jiménez, M. E. Sanjuan, A. Bula, and J. González, Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure, Journal of Energy Resources Technology, vol. 139, no. 2, p. 022201, 2017. https://doi.org/10.1115/1.4034026spa
dcterms.referencesS. Zhou, H. Ma, D. Liu, Y. Yan, S. Li, and C. Zhou, Experimental study of a hydrogen-air rotating detonation combustor, International Journal of Hydrogen Energy, vol. 42, no. 21, pp. 14741–14749, 2017. https://doi.org/10.1016/j.ijhydene.2017.04.214spa
dcterms.referencesQ. Xie, H. Wen, W. Li, Z. Ji, B. Wang, and P. Wolanski, Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition, Energy, vol. 151, pp. 408–419, 2018. https://doi.org/10.1016/j.energy.2018.03.062spa
dcterms.referencesS. M. Frolov et al., Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K, International Journal of Hydrogen Energy, vol. 43, no. 15, pp. 7515–7524, 2018. https://doi.org/10.1016/j.ijhydene.2018.02.187spa
dcterms.referencesY. Zhong, D. Jin, Y. Wu, and X. Chen, Investigation of rotating detonation wave fueled by “ethylene-acetylene-hydrogen” mixture, International Journal of Hydrogen Energy, vol. 43, no. 31, pp. 14787–14797, 2018. https://doi.org/10.1016/j.ijhydene.2018.05.174spa
dcterms.referencesV. Anand, A. St. George, C. Farbos de Luzan, and E. Gutmark, Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities, Experimental Thermal and Fluid Science, vol. 92, pp. 314–325, 2018. https://doi.org/10.1016/j.expthermflusci.2017.12.004spa
dcterms.referencesH. Peng, W. Liu, S. Liu, and H. Zhang, Experimental investigations on ethylene-air Continuous Rotating Detonation wave in the hollow chamber with Laval nozzle, Acta Astronautica, vol. 151, pp. 137–145, 2018. https://doi.org/10.1016/j.actaastro.2018.06.025spa
dcterms.referencesY. Wang, J. Le, C. Wang, and Y. Zheng, A non-premixed rotating detonation engine using ethylene and air, Applied Thermal Engineering, vol. 137, pp. 749–757, 2018. https://doi.org/10.1016/j.applthermaleng.2018.04.015spa
dcterms.referencesB. Le Naour, F. H. Falempin, and K. Coulon, MBDA R&T Effort Regarding Continuous Detonation Wave Engine for Propulsion - Status in 2016, in 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017. https://doi.org/10.2514/6.2017-2325spa
dcterms.referencesS. M. Frolov, V. S. Aksenov, V. S. Ivanov, and I. O. Shamshin, Continuous detonation combustion of ternary “hydrogen–liquid propane–air” mixture in annular combustor, International Journal of Hydrogen Energy, vol. 42, no. 26, pp. 16808–16820, 2017. https://doi.org/10.1016/j.ijhydene.2017.05.138spa
dcterms.referencesR. Bluemner, M. D. Bohon, C. O. Paschereit, and E. J. Gutmark, Counter-rotating wave mode transition dynamics in an RDC, International Journal of Hydrogen Energy, vol. 44, no. 14, pp. 7628–7641, 2019. https://doi.org/10.1016/j.ijhydene.2019.01.262spa
dcterms.referencesM. D. Bohon, R. Bluemner, C. O. Paschereit, and E. J. Gutmark, Measuring Rotating Detonation Combustion Using Cross-Correlation, Flow, Turbulence and Combustion, vol. 103, no. 1, pp. 271–292, 2019. https://doi.org/10.1007/s10494-019-00017-zspa
dcterms.referencesJ. Sun, J. Zhou, S. Liu, and Z. Lin, Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions, Acta Astronautica, vol. 152, pp. 630–638, 2018. https://doi.org/10.1016/j.actaastro.2018.09.012spa
dc.contributor.corporatenameInternational Review of Aerospace Engineeringspa
dc.identifier.doihttps://doi.org/10.15866/irease.v14i2.19363
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol. 14 N°.2. (2021)spa
dc.relation.citationendpage71spa
dc.relation.citationissue2 (2021)spa
dc.relation.citationstartpage64spa
dc.relation.citationvolume14spa
dc.relation.citesPardo, C., Pabon, J., Fonseca Vigoya, M., Study of the Detonation Wave in a Rotating Detonation Combustor Using Hydrogen and Mixtures Ethylene-Acetylene, (2021) International Review of Aerospace Engineering (IREASE), 14 (2), pp. 64-71.doi:https://doi.org/10.15866/irease.v14i2.19363
dc.relation.ispartofjournalInternational Review of Aerospace Engineeringspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.proposalCombustioneng
dc.subject.proposalDetonation Waveeng
dc.subject.proposalGas Fueleng
dc.subject.proposalHydrogeneng
dc.subject.proposalRotating Detonation Combustoreng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record