Mostrar el registro sencillo del ítem
Analysis of the influence of textured surfaces and lubrication conditions on the tribological performance between the compression ring and cylinder liner
dc.contributor.author | Pardo García, Carlos Eduardo | |
dc.contributor.author | Rojas Suárez, Jhan Piero | |
dc.contributor.author | Orjuela Abril, Martha Sofia | |
dc.date.accessioned | 2022-11-28T14:17:49Z | |
dc.date.available | 2022-11-28T14:17:49Z | |
dc.date.issued | 2021-05-06 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6623 | |
dc.description.abstract | The objective of the present investigation is to analyze the tribological performance between the union of the cylinder liner and the compression ring under the influence of surface texturing and different lubrication boundary conditions. The analysis is carried out by developing a numerical model, which involves hydrodynamic pressure, lubrication film thickness, textured surface, dynamic forces, and lubrication boundary conditions (starved lubrication and fully flooded lubrication). MATLAB® software (The MathWorks Inc., Natick, MA, USA) is used to solve the equations developed. The results show that the application of a textured surface on the cylinder liner allows obtaining a reduction of 20% and 5% in the asperity contact force and in the total friction force. Additionally, the textured surface allows for a 4% increase in MOFT. In this way, it is possible to reduce the power loss. The implementation of a boundary condition of fully flooded lubrication produces an overestimation in the total friction force due to the greater prominence of the lubrication film. Implementing a textured surface in the ring profile is an alternative way to reduce power loss. The results show that this alternative allows an 8% reduction in power loss. | eng |
dc.format.extent | 25 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Lubricants | spa |
dc.relation.ispartof | Lubricants. Vol. 9 N°.5. (2021) | |
dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2075-4442/9/5/51 | spa |
dc.title | Analysis of the influence of textured surfaces and lubrication conditions on the tribological performance between the compression ring and cylinder liner | eng |
dc.type | Artículo de revista | spa |
dcterms.references | De La Hoz, J.S.; Valencia, G.; Forero, J.D. Reynolds Averaged Navier–Stokes Simulations of the Airflow in a Centrifugal Fan Using OpenFOAM. Int. Rev. Model. Simul. 2019, 12, 230–242. | spa |
dcterms.references | Orozco, T.; Herrera, M.; Forero, J.D. CFD Study of Heat Exchangers Applied in Brayton Cycles: A Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid. Int. Rev. Model. Simul. 2019, 12, 72–82. | spa |
dcterms.references | Dolatabadi, N.; Forder, M.; Morris, N.; Rahmani, R.; Rahnejat, H.; Howell-Smith, S. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction. Appl. Energy 2020, 259, 114129. | spa |
dcterms.references | Orozco, W.; Acuña, N.; Forero, J.D. Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System. Int. Rev. Mech. Eng. 2017, 13, 420–426. | spa |
dcterms.references | Exxon Mobil Corporation. Exxon Mobil Corporation Report: Outlook for Energy: A View to 2040. 2017. Available online: https://cdn.exxonmobil.com/~{}/media/global/files/outlook-for-energy/2017/2017-outlook-for-energy.pdf (accessed on 12 January 2021). | spa |
dcterms.references | Escobar-Yonoff, R.; Maestre-Cambronel, D.; Charry, S.; Rincón-Montenegro, A.; Portnoy, I. Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation. Heliyon 2021, 7, e06506. | spa |
dcterms.references | Roberts, A.; Brooks, R.; Shipway, P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Convers. Manag. 2014, 82, 327–350. | spa |
dcterms.references | Forero, J.D.; Taborda, L.L.; Silvera, A.B. Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications. Int. Rev. Mech. Eng. 2019, 13, 11–20. | spa |
dcterms.references | Rahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals Applications and Future Trends; Woodhead Publishing: Cambridge, UK, 2010. | spa |
dcterms.references | Ochoa, G.V.; Rojas, J.P.; Forero, J.D. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. | spa |
dcterms.references | Richardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506–519. | spa |
dcterms.references | Sun, J.; Zhu, J.; Wang, H.; Zhao, X.; Teng, Q.; Ren, Y.; Zhu, G.; Zhang, X.; Gao, Y. Research on the influence of the lubrication status at the inlet on the lubrication characteristics of engine piston ring. Lubr. Sci. 2020, 32, 321–332. | spa |
dcterms.references | Alibaba, M.; Pourdarbani, R.; Manesh, M.H.K.; Ochoa, G.V.; Forero, J.D. Thermodynamic, exergo-economic and exergoenvironmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon 2020, 6, e03758. | spa |
dcterms.references | Duarte, J.; Garcia, J.; Jiménez, J.; Sanjuan, M.E.; Bula, A.; González, J. Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure. J. Energy Resour. Technol. 2017, 139, 022201. | spa |
dcterms.references | Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. | spa |
dcterms.references | Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437. | spa |
dcterms.references | Obregon, L.; Valencia, G.; Forero, J.D. Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD. Int. Rev. Model. Simul. 2019, 12, 245–252. | spa |
dcterms.references | Ochoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. | spa |
dcterms.references | Ma, Z.; Henein, N.A.; Bryzik, W. A Model for Wear and Friction in Cylinder Liners and Piston Rings. Tribol. Trans. 2006, 49, 315–327. | spa |
dcterms.references | Hernández-Comas, B.; Maestre-Cambronel, D.; Pardo-García, C.; Fonseca-Vigoya, M.; Pabón-León, J. Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines. Lubricants 2021, 9, 25. | spa |
dcterms.references | Baker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801. | spa |
dcterms.references | Rahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581. | spa |
dcterms.references | Mishra, P.C.; Balakrishnan, S.; Rahnejat, H. Tribology of compression ring-to-cylinder contact at reversal. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2008, 222, 815–826. | spa |
dcterms.references | Mishra, P.C. Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle. Int. J. Adv. Manuf. Technol. 2013, 66, 1075–1085. | spa |
dcterms.references | Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305. | spa |
dcterms.references | Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 2013, 59, 248–258. | spa |
dcterms.references | Fatjo, G.G.A.; Smith, E.; Sherrington, I. Mapping lubricating film thickness, film extent and ring twist for the compression-ring in a firing internal combustion engine. Tribol. Int. 2014, 70, 112–118. | spa |
dcterms.references | Checo, H.M.; Ausas, R.F.; Jai, M.; Cadalen, J.P.; Choukroun, F.; Buscaglia, G.C. Moving textures: Simulation of a ring sliding on a textured liner. Tribol. Int. 2014, 72, 131–142. | spa |
dcterms.references | Hu, Y.; Meng, X.; Xie, Y. A new efficient flow continuity lubrication model for the piston ring-pack with consideration of oil storage of the cross-hatched texture. Tribol. Int. 2018, 119, 443–463. | spa |
dcterms.references | Priest, M.; Dowson, D.; Taylor, C.M. Theoretical modelling of cavitation in piston ring lubrication. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2000, 214, 435–447. | spa |
dcterms.references | Richardson, D.E.; Borman, G.L. Theoretical and Experimental Investigations of Oil Films for Application to Piston Ring Lubrication. Sae Tech. Pap. Ser. 1992, 936, 922341. | spa |
dcterms.references | Ma, M.T.; Sherrington, I.; Smith, E.H. Implementation of an Algorithm to Model the Starved Lubrication of a Piston Ring in Distorted Bores: Prediction of Oil Flow and Onset of Gas Blow-By. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1996, 210, 29–44. | spa |
dcterms.references | Tian, T.; Wong, V.W.; Heywood, J.B. A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces. Sae Trans. 1996, 1783–1795. | spa |
dcterms.references | Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.references | Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.J.; Padilla, R.V. Maximum Power from Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. | spa |
dcterms.references | Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.references | Morris, N.; Mohammadpour, M.; Rahmani, R.; Johns-Rahnejat, P.M.; Rahnejat, H.; Dowson, D. Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing. Tribol. Int. 2018, 120, 243–254. | spa |
dcterms.references | Saidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 2012, 16, 5649–5659. | spa |
dcterms.references | Liu, Z.; Meng, X.; Wen, C.; Yu, S.; Zhou, Z. On the oil-gas-solid mixed bearing between compression ring and cylinder liner under starved lubrication and high boundary pressures. Tribol. Int. 2019, 140, 105869. | spa |
dcterms.references | Babu, P.V.; Syed, I.; BenBeera, S. Experimental investigation on effects of positive texturing on friction and wear reduction of piston ring/cylinder liner system. Mater. Today Proc. 2020, 24, 1112–1121. | spa |
dcterms.references | Vlădescu, S.-C.; Ciniero, A.; Tufail, K.; Gangopadhyay, A.; Reddyhoff, T. Looking into a laser textured piston ring-liner contact. Tribol. Int. 2017, 115, 140–153. | spa |
dcterms.references | Patil, A.S.; Shirsat, U. Effect of laser textured dimples on tribological behavior of piston ring and cylinder liner contact at varying load. Mater. Today Proc. 2021, 44, 1005–1020. | spa |
dcterms.references | Ezhilmaran, V.; Vasa, N.; Vijayaraghavan, L. Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction. Surf. Coat. Technol. 2018, 335, 314–326. | spa |
dcterms.references | Koszela, W.; Pawlus, P.; Reizer, R.; Liskiewicz, T. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines. Tribol. Int. 2018, 127, 470–477. | spa |
dcterms.references | Grabon, W.; Koszela, W.; Pawlus, P.; Ochwat, S. Improving tribological behaviour of piston ring-cylinder liner frictional pair by liner surface texturing. Tribol. Int. 2013, 61, 102–108. | spa |
dcterms.references | Babu, P.V.; Ismail, S.; Ben, B.S. Experimental and numerical studies of positive texture effect on friction reduction of sliding contact under mixed lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 360–375. | spa |
dcterms.references | Mishra, P.; Ramkumar, P. Effect of Micro Texture on Tribological Performance of Piston Ring-Cylinder Liner System under Different Lubrication Regimes. Sae Tech. Pap. 2018, 28, 52. | spa |
dcterms.references | Mishra, P.; Ramkumar, P. Effect of additives on a surface textured piston ring-cylinder liner system. Tribol. Mater. Surf. Interfaces 2019, 13, 67–75 | spa |
dcterms.references | Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. | spa |
dcterms.references | Roelands, C.J.A.; Winer, W.O.; Wright, W.A. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In dissertation at Technical University of Delft, 1966). J. Lubr. Technol. 1971, 93, 209–210. | spa |
dcterms.references | Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245. | spa |
dcterms.references | Patir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubr. Technol. 1978, 100, 12–17. | spa |
dcterms.references | Patir, N.; Cheng, H.S. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces. J. Lubr. Technol. 1979, 101, 220–229. | spa |
dcterms.references | Chong, W.; Howell-Smith, S.; Teodorescu, M.; Vaughan, N. The influence of inter-ring pressures on piston-ring/liner tribological conjunction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 227, 154–167. | spa |
dcterms.references | Tamminen, J.; Sandström, C.-E.; Nurmi, H. Influence of the Piston Inter-ring Pressure on the Ring Pack Behaviour in a Medium Speed Diesel Engine. SAE Tech. Pap. 2005, 3847, 1–13. | spa |
dcterms.references | Lyubarskyy, P.; Bartel, D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int. 2016, 104, 352–368. | spa |
dcterms.references | Makartchouk, A. Diesel Engine Engineering: Thermodynamics, Dynamics, Design, and Control; CRC Press: Boca Raton, FL, USA, 2002. | spa |
dcterms.references | Greenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633. | spa |
dcterms.references | Teodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi- physics Approach to System Dynamics. Tribol. Interface Eng. Ser. 2005, 48, 725–737. | spa |
dcterms.references | Styles, G.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. In-cycle and life-time friction transience in piston ring–liner conjunction under mixed regime of lubrication. Int. J. Engine Res. 2014, 15, 862–876. | spa |
dcterms.references | Uras, H.M.; Patterson, D.J. Effect of Some Lubricant and Engine Variables on Instantaneous Piston and Ring Assembly Friction. Sae Trans. 1984, 918–931. | spa |
dcterms.references | Turnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991. | spa |
dc.contributor.corporatename | Lubricants | spa |
dc.identifier.doi | https://doi.org/10.3390/lubricants9050051 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol.9 N°.5. (2021) | spa |
dc.relation.citationendpage | 25 | spa |
dc.relation.citationissue | 5 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 9 | spa |
dc.relation.cites | García, C. P., Rojas, J. P., & Abril, S. O. (2021). Analysis of the Influence of Textured Surfaces and Lubrication Conditions on the Tribological Performance between the Compression Ring and Cylinder Liner. Lubricants, 9(5), 51. | |
dc.relation.ispartofjournal | Lubricants | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | compression ring | eng |
dc.subject.proposal | fully flooded lubrication | eng |
dc.subject.proposal | power loss | eng |
dc.subject.proposal | starved lubrication | eng |
dc.subject.proposal | surface texturing | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |