dc.contributor.author | Pardo García, Carlos Eduardo | |
dc.contributor.author | Rojas Suárez, Jhan Piero | |
dc.contributor.author | Orjuela Abril, Martha Sofia | |
dc.date.accessioned | 2022-11-28T13:49:06Z | |
dc.date.available | 2022-11-28T13:49:06Z | |
dc.date.issued | 2021-04-09 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6622 | |
dc.description.abstract | In the present work, a numerical model is developed to investigate the influence of wear
and misalignment on the bearings of a stationary diesel engine. The model implemented considers
the effects of surface wear on the bearing, cavitation effects, and surface roughness. For the numerical
analysis, changes in the surface roughness of σ = 0.75 µm, σ = 1 µm, and σ = 1.25 µm are defined,
and changes in the bearing load of 50%, 75%, and 100%. The results demonstrated that increasing
the surface roughness intensifies the bearing wear, which represents 18% and 140% of the bearing
clearance for the roughness of σ = 1 µm and σ = 1.25 µm, respectively. Additionally, the surface
roughness causes a considerable increase in the bearing wear rate. The results described a maximum
wear rate of 20 µm/s. In general, increasing the bearing load by 25% doubles the hydrodynamic
pressure conditions increases friction force by 33%, and reduces lubrication film thickness by 12%. The
analysis of the angle of deflection, φx and φy, shows that the moment and the degree of misalignment
tend to increase significantly with the increase in the magnitude of the angle φy. Negative angles of
deflection, φx, produce a greater increase in the degree of misalignment and the moment. This implies
a greater chance of contact with the bearing surface. In conclusion, the proposed methodology serves
as a reliable tool to simultaneously evaluate key parameters on the tribological behavior of bearings
that further extend their endurance and minimize wear damage. | eng |
dc.format.extent | 22 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Lubricants | spa |
dc.relation.ispartof | Lubricants. Vol. 9 N°.4. (2021) | |
dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2075-4442/9/4/42 | spa |
dc.title | Document details - A numerical model for the analysis of the bearings of a diesel engine subjected to conditions of wear and misalignment | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.references | Forero, J.D.; Ochoa, G.V.; Alvarado, W.P. Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine. Lubricants 2020, 8, 97. | spa |
dcterms.references | Forero, J.D.; Ochoa, G.V.; Rojas, J.P. Effect of the Geometric Profile of Top Ring on the Tribological Characteristics of a LowDisplacement Diesel Engine. Lubricants 2020, 8, 83. | spa |
dcterms.references | Bergmann, P.; Grün, F.; Summer, F.; Gódor, I. Evaluation of Wear Phenomena of Journal Bearings by Close to Component Testing and Application of a Numerical Wear Assessment. Lubricants 2018, 6, 65. | spa |
dcterms.references | Jang, J.Y.; Khonsari, M.M. On the Characteristics of Misaligned Journal Bearings. Lubricants 2015, 3, 27–53. | spa |
dcterms.references | Jang, J.; Khonsari, M. Performance and characterization of dynamically-loaded engine bearings with provision for misalignment. Tribol. Int. 2019, 130, 387–399. | spa |
dcterms.references | Obregon, L.; Valencia, G.; Forero, J.D. Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD. Int. Rev. Model. Simul. 2019, 12, 245. | spa |
dcterms.references | Orozco, T.; Herrera, M.; Forero, J.D. CFD Study of Heat Exchangers Applied in Brayton Cycles: A Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid. Int. Rev. Model. Simul. 2019, 12, 72–82. | spa |
dcterms.references | Orozco, W.; Acuña, N.; Forero, J.D. Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System. Int. Rev. Mech. Eng. 2017, 13, 420. | spa |
dcterms.references | Chasalevris, A.; Dohnal, F.; Chatzisavvas, I. Experimental detection of additional harmonics due to wear in journal bearings using excitation from a magnetic bearing. Tribol. Int. 2014, 71, 158–167. | spa |
dcterms.references | Beheshti, A.; Khonsari, M. An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 2013, 308, 121–131. | spa |
dcterms.references | De La Hoz, J.S.; Valencia, G.; Forero, J.D. Reynolds Averaged Navier–Stokes Simulations of the Airflow in a Centrifugal Fan Using OpenFOAM. Int. Rev. Model. Simul. 2019, 12, 230. | spa |
dcterms.references | Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. | spa |
dcterms.references | Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437. | spa |
dcterms.references | Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.J.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. | spa |
dcterms.references | Nabhan, A.; Rashed, A.; Ghazaly, N.M.; Abdo, J.; Haneef, M.D. Tribological Properties of Al2O3 Nanoparticles as Lithium Grease Additives. Lubricants 2021, 9, 9. | spa |
dcterms.references | Aghdam, A.; Khonsari, M. Prediction of wear in grease-lubricated oscillatory journal bearings via energy-based approach. Wear 2014, 318, 188–201. | spa |
dcterms.references | Chun, S.M.; Khonsari, M.M. Wear simulation for the journal bearings operating under aligned shaft and steady load during start-up and coast-down conditions. Tribol. Int. 2016, 97, 440–466. | spa |
dcterms.references | Sander, D.E.; Allmaier, H.; Priebsch, H.; Reich, F.; Witt, M.; Skiadas, A.; Knaus, O. Edge loading and running-in wear in dynamically loaded journal bearings. Tribol. Int. 2015, 92, 395–403. | spa |
dcterms.references | Jia, H.; Li, J.; Wang, J.; Xiang, G.; Xiao, K.; Han, Y. Micropitting Fatigue Wear Simulation in Conformal-Contact Under Mixed Elastohydrodynamic Lubrication. J. Tribol. 2019, 141, 061501-27. | spa |
dcterms.references | Gu, C.; Meng, X.; Wang, S.; Ding, X. Modeling a Hydrodynamic Bearing With Provision for Misalignments and Textures. J. Tribol. 2019, 142, 1–29. | spa |
dcterms.references | Li, L.; Zhang, D.; Xie, Y. Effect of misalignment on the dynamic characteristic of MEMS gas bearing considering rarefaction effect. Tribol. Int. 2019, 139, 22–35. | spa |
dcterms.references | Li, B.; Sun, J.; Zhu, S.; Fu, Y.; Zhao, X.; Wang, H.; Teng, Q.; Ren, Y.; Li, Y.; Zhu, G. Thermohydrodynamic lubrication analysis of misaligned journal bearing considering the axial movement of journal. Tribol. Int. 2019, 135, 397–407. | spa |
dcterms.references | Zhu, S.; Sun, J.; Li, B.; Zhu, G. Thermal turbulent lubrication analysis of rough surface journal bearing with journal misalignment. Tribol. Int. 2020, 144, 106109. | spa |
dcterms.references | Feng, H.; Jiang, S.; Ji, A. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 2019, 130, 245–260. | spa |
dcterms.references | Zheng, L.; Zhu, H.; Zhu, J.; Deng, Y. Effects of oil film thickness and viscosity on the performance of misaligned journal bearings with couple stress lubricants. Tribol. Int. 2020, 146, 106229. | spa |
dcterms.references | Xie, Z.; Song, P.; Hao, L.; Shen, N.; Zhu, W.; Liu, H.; Shi, J.; Wang, Y.; Tian, W. Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant. Ann. Nucl. Energy 2020, 141, 107355. | spa |
dcterms.references | Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylin-der and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.references | Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165. | spa |
dcterms.references | Xie, Z.; Rao, Z.; Liu, H. Effect of Surface Topography and Structural Parameters on the Lubrication Performance of a WaterLubricated Bearing: Theoretical and Experimental Study. Coatings 2019, 9, 23. | spa |
dcterms.references | Xie, Z.; Rao, Z.-S.; Ta, N.; Liu, L. Investigations on transitions of lubrication states for water lubricated bearing. Part I: Determination of friction coefficients and film thickness ratios. Ind. Lubr. Tribol. 2016, 68, 404–415. | spa |
dcterms.references | Xie, Z.; Rao, Z.-S.; Ta, N.; Liu, L. Investigations on transitions of lubrication states for water lubricated bearing. Part II: Further insight into the film thickness ratio lambda. Ind. Lubr. Tribol. 2016, 68, 416–429. | spa |
dcterms.references | Jang, J.Y.; Khonsari, M.M. On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis. J. Tribol. 2009, 132, 011702. | spa |
dcterms.references | Vijayaraghavan, D.; Keith, T. Effect of cavitation on the performance of a grooved misaligned journal bearing. Wear 1989, 134, 377–397. | spa |
dcterms.references | Elrod, H.G.; Adams, M.L. A computer program for cavitation and starvation problems. Cavitation Relat. Phenom. Lubricants 1975, 37–41. | spa |
dcterms.references | Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. | spa |
dcterms.references | Kogut, L.; Etsion, I. A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces. Tribol. Trans. 2003, 46, 383–390. | spa |
dcterms.references | Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. | spa |
dcterms.references | Yang, P.; Cui, J.; Jin, Z.M.; Dowson, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 2: Thermal and Newtonian lubricant solution. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2005, 219, 187–200. | spa |
dcterms.references | Ausas, R.F.; Jai, M.; Buscaglia, G.C. A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation. J. Tribol. 2009, 131, 031702. | spa |
dcterms.references | Zhang, H.; Hua, M.; Dong, G.-N.; Zhang, D.-Y.; Chin, K.-S. A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol. Int. 2016, 93, 583–592. | spa |
dcterms.references | Paranjpe, R.S. A Study of Dynamically Loaded Engine Bearings Using a Transient Thermohydrodynamic Analysis. Tribol. Trans. 1996, 39, 636–644. | spa |
dc.contributor.corporatename | Lubricants | spa |
dc.identifier.doi | https://doi.org/10.3390/lubricants9040042 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol.9 N°.4. (2021) | spa |
dc.relation.citationendpage | 22 | spa |
dc.relation.citationissue | 4 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 9 | spa |
dc.relation.cites | Pardo García, C., Rojas, J. P., & Orjuela Abril, S. (2019). A Numerical Model for the Analysis of the Bearings of a Diesel Engine Subjected to Conditions of Wear and Misalignment. Tribol. Int, 130, 387-399. | |
dc.relation.ispartofjournal | Lubricants | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | engine bearings | eng |
dc.subject.proposal | deflection angle | eng |
dc.subject.proposal | misalignment | eng |
dc.subject.proposal | surface roughness | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |