Mostrar el registro sencillo del ítem
Application of neural and bayesian networks in diesel engines under the flaw detection method
dc.contributor.author | Prada Botia, Gaudy Carolina | |
dc.contributor.author | PABON LEON, JHON ANTUNY | |
dc.contributor.author | Orjuela Abril, Martha Sofia | |
dc.date.accessioned | 2022-11-28T01:35:18Z | |
dc.date.available | 2022-11-28T01:35:18Z | |
dc.date.issued | 2021-05-22 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6620 | |
dc.description.abstract | The identification of premature faults in Internal Combustion Engines has become determinant to guarantee suitable operation. Therefore, this study focuses on the implementation of fault diagnostic methodology by using advanced algorithms such as Back Propagation neural networks and Bayesian networks. Results indicated that the proposed methodology serves as a robust tool to identify different fault conditions in a wide operational spectrum with an reliability of nearly 73%. Moreover, the Backpropagation network diagnostic methodology presented an reliability of 18%, which is 3% higher than Bayesian networks. Overall, the implemented methodology counterbalanced interference conditions and noise signals while providing versatility to operate for different types of engines. In conclusion, this study can be extrapolated to different fields of physics to assist in identifying flaws in experimental test benches. | eng |
dc.format.extent | 08 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Journal of Physics: Conference Series. Vol. 1981 No.012003 (2021) | |
dc.rights | Published under licence by IOP Publishing Ltd | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1981/1/012003 | spa |
dc.title | Application of neural and bayesian networks in diesel engines under the flaw detection method | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Hernández-Comas B, Maestre-Cambronel D, Pardo-García C, Fonseca-Vigoya M D S, Pabón-León J 2021 Influence of compression rings on the dynamic characteristics and sealing capacity of the combustion chamber in diesel engines Lubricants 9(3) 25 | spa |
dcterms.references | Wen L, Li X, Gao L, Zhang Y 2017 A new convolutional neural network-based data-driven fault diagnosis method IEEE Transactions on Industrial Electronics 65(7) 5990 | spa |
dcterms.references | Forero J D, Ochoa G V, Alvarado W P 2020 Study of the piston secondary movement on the tribological performance of a single cylinder low-displacement diesel engine Lubricants 8(11) 97 | spa |
dcterms.references | Forero J D, Ochoa G V, Alvarado W P 2020 Study of the piston secondary movement on the tribological performance of a single cylinder low-displacement diesel engine Lubricants 8(11) 97 | spa |
dcterms.references | Escobar-Yonoff R, Maestre-Cambronel D, Charry S, Rincón-Montenegro A, Portnoy I 2021 Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation Heliyon 7(3) e06506 | spa |
dcterms.references | Xu X, Yan X, Sheng C, Yuan C, Xu D, Yang J 2017 A belief rule-based expert system for fault diagnosis of marine diesel engines IEEE Trans. Syst. Man, Cybern. Syst. 50(2) 656 | spa |
dcterms.references | Zhong J-H, Wong P K, Yang Z-X 2018 Fault diagnosis of rotating machinery based on multiple probabilistic classifiers Mech. Syst. Signal Process. 108(1) 99 | spa |
dcterms.references | Bi X, Cao S, Zhang D 2019 Diesel engine valve clearance fault diagnosis based on improved variational mode decomposition and bispectrum Energies 12(4) 661 | spa |
dcterms.references | Wei Y, Liu H, Chen G, Ye J 2020 Fault diagnosis of marine turbocharger system based on an unsupervised algorithm J. Electr. Eng. \& Technol. 15(1) 1331-1343 | spa |
dcterms.references | Xu X, Zhao Z, Xu X, Yang J, Chang L, Yan X, Wang G 2020 Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models Knowledge-Based Syst. 190 105324 | spa |
dcterms.references | Lazakis I, Gkerekos C, Theotokatos G 2019 Investigating an SVM-driven, one-class approach to estimating ship systems condition Ships Offshore Struct. 14(5) 432 | spa |
dcterms.references | Liu S, Lü M 2019 Fault diagnosis of the blocking diesel particulate filter based on spectral analysis Processes 7(12) 943 | spa |
dcterms.references | Tao J, Qin C, Li W, Liu C 2019 Intelligent fault diagnosis of diesel engines via extreme gradient boosting and high-reliability time--frequency information of vibration signals Sensors 19(15) 3280 | spa |
dcterms.references | Valencia Ochoa G, Isaza-Roldan C, Duarte Forero J 2020 Economic and exergo-advance analysis of a waste heat recovery system based on regenerative organic rankine cycle under organic fluids with low global warming potential Energies 13(6) 1317 | spa |
dcterms.references | Valencia Ochoa G, Cárdenas Gutierrez J, Duarte Forero J 2020 Exergy, economic, and life-cycle assessment of orc system for waste heat recovery in a natural gas internal combustion engine Resources 9(1) 2 | spa |
dcterms.references | Duarte J, Garcia J, Jiménez J, Sanjuan M, Bula A, González J 2017 Auto-ignition control in spark-ignition engines using internal model control structure Journal of Energy Resources Technology 139(2) 022201 | spa |
dcterms.references | Alibaba M, Pourdarbani R, Manesh M H K, Ochoa G V, Forero J D 2020 Thermodynamic, exergoeconomic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept Heliyon 6(4) e03758 | spa |
dcterms.references | Herrera M, Pacheco E C, Forero J D, Lascano A F, Vasquez R 2018 Análisis exergético de un ciclo Brayton supercrítico con dióxido de carbono como fluido de trabajo Exergetic analysis of a supercritical Brayton cycle with carbon dioxide as working fluid Ingecuc 14(1) 159 | spa |
dcterms.references | Obregon L, Valencia G, Duarte Forero J 2019 Efficiency optimization study of a centrifugal pump for industrial dredging applications using CFD International Review on Modelling and Simulations (IREMOS) 12(4) 245 | spa |
dcterms.references | Orozco T, Herrera M, Duarte Forero J 2019 CFD study of heat exchangers applied in brayton cycles: a case study in supercritical condition using carbon dioxide as working fluid International Review on Modelling and Simulations (IREMOS) 12(2) 72 | spa |
dcterms.references | Sanchez De la Hoz J, Valencia G, Duarte Forero J 2019 Reynolds averaged navier–stokes simulations of the airflow in a centrifugal fan using OpenFOAM International Review on Modelling and Simulations (IREMOS) 12(4) 230 | spa |
dcterms.references | Consuegra F, Bula A, Guillín W, Sánchez J, Duarte Forero J 2019 Instantaneous in-cylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines Energies 12(8) 1437 | spa |
dc.contributor.corporatename | Journal of Physics: Conference Series | spa |
dc.identifier.doi | 10.1088/1742-6596/1981/1/012003 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 1981 N0.012003 (2021) | spa |
dc.relation.citationendpage | 7 | spa |
dc.relation.citationissue | 012003 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | Vol.1981 | spa |
dc.relation.cites | G C Prada Botia et al 2021 J. Phys.: Conf. Ser. 1981 012003 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |