dc.contributor.author | Prada Botia, Gaudy Carolina | |
dc.contributor.author | Rojas Suárez, J P | |
dc.contributor.author | Orjuela Abril, Martha Sofia | |
dc.date.accessioned | 2022-11-23T18:27:46Z | |
dc.date.available | 2022-11-23T18:27:46Z | |
dc.date.issued | 2021-06-04 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6601 | |
dc.description.abstract | Typically, the performance evaluation of thermoelectric devices is done using
experimental methods and analytical models, which require detailed information on the
thermoelectric properties of the materials that make up the thermoelectric devices. However, this
type of information is generally not available. Due to this situation, the present investigation
seeks to develop a numerical methodology to determine the performance of thermoelectric
devices, using technical reference specifications that are normally provided by the manufacturer,
such as maximum current, maximum voltage, maximum temperature difference, and efficiency.
The numerical model is made up of a series of equations based on thermoelectric phenomena,
which generates a contribution in the area of physics. The results obtained are validated through
experimental comparisons and the technical data of the thermoelectric devices. The comparison
between the different results shows a maximum error of 5%. Therefore, the developed
methodology is considered a robust tool for the realistic analysis of the performance of
thermoelectric generators and thermoelectric coolers. The foregoing will allow massive use of
this type of device in industrial applications and its commercial accessibility. | eng |
dc.format.extent | 08 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Journal of Physics: Conference Series, Volume 2046, 5+1 International Meeting for Researchers in Materials and Plasma Technology (5+1 IMRMPT), 2 - 4 June 2021, Medellín, Colombia | |
dc.rights | Published under licence by IOP Publishing Ltd | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012012/meta | spa |
dc.title | Development of a numerical methodology for evaluating physical properties and technical specifications in thermoelectric devices | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Estrada López J J, Abuellil A, Costilla Reyes A, Sánchez-Sinencio E 2018 IEEE International Symposium on Circuits and Systems ISCAS (Italia: IEEE) p 1 | spa |
dcterms.references | Narducci D 2019 J. Phys. Energy 1 1 | spa |
dcterms.references | Zaia E W, Gordon M P, Yuan P, Urban J J 2019 Adv. Electron. Mater. 5 1 | spa |
dcterms.references | Ishaq H, Islam S, Dincer I, Yilbas B S 2020 J. Clean. Prod. 256 1 | spa |
dcterms.references | Li K, Garrison G, Moore M, Zhu Y, Liu C, Horne R, Petty S 2020 Int. J. Heat. Mass. Transf. 160 1 | spa |
dcterms.references | Ramírez R, Gutiérrez A S, Eras J J C, Valencia K, Hernández B, Forero J D 2019 J. Clean. Prod. 241 1 | spa |
dcterms.references | Hernández B, Maestre D, Pardo C, Fonseca M D S, Pabón J 2021 Lubricants 9 1 | spa |
dcterms.references | Madkhali H A, Hamil A, Lee H 2017 J. Electron. Mater. 46 67568 | spa |
dcterms.references | Fagehi H, Attar A, Lee H 2018 J. Electron. Mater. 47 3983 | spa |
dcterms.references | Valencia Ochoa G, Duarte Forero J, Rojas J P 2020 Heliyon 6 1 | spa |
dcterms.references | Gusev V V, Pustovalov A A, Rybkin N N, Anatychuk L I, Demchuk B N, Ludchak I Y 2011 J. Electron. Mater. 40 807 | spa |
dcterms.references | Attar A, Lee H 2016 Energy Convers. Manag. 112 328 | spa |
dcterms.references | Elarusi A, Attar A, Lee H 2018 J. Electron. Mater. 47 1311 | spa |
dcterms.references | Sanchez J, Valencia G, Duarte Forero J 2019 International Review on Modelling and Simulations (I.RE.MO.S.) 12(4) 230 | spa |
dcterms.references | Valencia Ochoa G, Cárdenas Gutierrez J, Duarte Forero J 2020 Resources 9 1 | spa |
dcterms.references | Valencia Ochoa G, Acevedo Peñaloza C, Duarte Forero J 2019 Energies 12 1 | spa |
dcterms.references | Luo Z 2008 Electron. Cool. 14 22 | spa |
dcterms.references | Lee H, Attar A M, Weera S L 2015 J. Electron. Mater. 44 2157 | spa |
dcterms.references | Lineykin S, Ben-Yaakov S 2007 IEEE Trans. Ind. Appl. 43 505 | spa |
dcterms.references | Zhang H Y 2010 Int. J. Refrig. 33 1187 | spa |
dcterms.references | Lee H 2016 Thermoelectrics: Design and Materials (Unuted Kingdom: John Wiley & Sons) | spa |
dcterms.references | Lee H 2013 Energy 56 61 | spa |
dc.contributor.corporatename | Journal of Physics: Conference Series | spa |
dc.identifier.doi | 10.1088/1742-6596/2046/1/012012 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 2046 N0.012012 (2021) | spa |
dc.relation.citationendpage | 7 | spa |
dc.relation.citationissue | 012012 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | Vol.2046 | spa |
dc.relation.cites | G C Prada Botia et al 2021 J. Phys.: Conf. Ser. 2046 012012 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |