Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno Gamboa, Faustino
dc.contributor.authorAcevedo-Paéz, J C
dc.contributor.authorSanin-Villa, D
dc.date.accessioned2022-11-18T19:44:49Z
dc.date.available2022-11-18T19:44:49Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6544
dc.description.abstractA thermodynamic analysis of a hybrid gas turbine solar plant, represented in three basic subsystems related to the power cycle, the combustion chamber subsystem, and the solar concentrator subsystem, allows evaluating the performance of a hybrid cycle from a reduced number of parameters, which include energy losses in each of its components. The solar radiation values are estimated with an evaluated and validated theoretical model, the combustion chamber uses natural gas as fuel and the numerical values of the system are taken from the Solugas experimental plant in Spain. This work presents an integrated model that allows to estimate the operation of a hybrid solar Brayton power plant in any place and day of the year. The evaluation of the plant in Barranquilla, Colombia is shown from the influence of the regenerator has on the plant performance and solar concentrating system. The results show that the regenerator can increase the overall efficiency of the plant by 29% and allows reaching a maximum temperature of the central receiver of the concentrator of 1044 K at noon, when solar radiation is maximum.eng
dc.format.extent7 Pàginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series. Vol 2139 No.1 (2021)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.researchgate.net/publication/356933832_Effect_of_a_regenerator_on_hybrid_solar_gas_turbine_performance_in_Barranquilla_Colombiaspa
dc.titleEffect of a regenerator on hybrid solar gas turbine performance in Barranquilla, Colombiaeng
dc.typeDocumento de Conferenciaspa
dcterms.referencesFoster R, Ghassemi M, Cota A 2010 Solar Energy. Renewable Energy and Environment (Boca Raton: CRC Press)spa
dcterms.referencesGoswami D Y 2015 Principles of Solar Engineering (Boca Raton: CRC Press)spa
dcterms.referencesLiao Z, Faghri A 2016 Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower Applied Thermal Engineering 102 952spa
dcterms.referencesMerchán R P, Santos M J, Medina A, Calvo Hernández A 2018 Thermodynamic model of a hybrid Brayton thermosolar plant Renewable Energy 128 473spa
dcterms.referencesHorlock J H 2003 Advanced Gas Turbine Cycles (Kidlington: Elsevier Sciences)spa
dcterms.referencesJamel M S, Abd Rahman A, Shamsuddin A H 2013 Advances in the integration of solar thermal energy with conventional and non-conventional power plants Renewable and Sustainable Energy Review 20 71spa
dcterms.referencesQuero M, Korzynietz R, Ebert M, Jiménez A A, del Río A, Brioso J A 2014 Solugas – Operation experience of the first solar hybrid gas turbine system at MW scale Energy Procedia 49 1820spa
dcterms.referencesSantos M J, Merchán R P, Medina A, Calvo Hernandez A 2016 Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant Energy Conversion and Management 115 89spa
dcterms.referencesGueymard C 2000 Prediction and performance assessment of mean hourly global radiation Solar Energy 68(3) 285spa
dcterms.referencesMejdoul R, Taqi M 2012 The mean hourly global radiation prediction models investigation in two different climate regions in Morocco International Journal of Renewable Energy Research 2(4) 608spa
dcterms.referencesYao W, Li Z, Xiu T, Lu Y, Li X 2015 New decomposition models to estimate hourly global solar radiation from the daily value Solar Energy 120 87spa
dcterms.referencesNational Aeronautics and Space Administration (NASA) 2020 Prediction of Worldwide Energy Resources Data Access Viewer V2.0.0 (Hampton: NASA Langley Research Centerspa
dcterms.referencesMoreno-Gamboa F, Escudero-Atehortua A, Nieto-Londoño C 2020 Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods Thermal Science and Engineering Progress 20 100679spa
dcterms.referencesOlivenza-León D, Medina A, Calvo Hernández A 2015 Thermodynamic modeling of a hybrid solar gasturbine power plant Energy Conversion and Management 93 435spa
dcterms.referencesRamírez-Cerpa E, Acosta-Coll M, Vélez-Zapata J 2017 Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia Idesia (Arica) 35(2) 87spa
dc.identifier.doi10.1088/1742-6596/2139/1/012012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_8544spa
dc.type.contentEventspa
dc.type.driverinfo:eu-repo/semantics/conferenceObjectspa
dc.type.driverinfo:eu-repo/semantics/conferenceObjectspa
dc.type.driverinfo:eu-repo/semantics/conferenceObjectspa
dc.type.redcolhttps://purl.org/redcol/resource_type/ECspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/