Show simple item record

dc.contributor.authorRomero-Garcia, Gonzalo
dc.contributor.authorVillada Castillo, Dora Clemencia
dc.contributor.authorRojas Suárez, Jhan Piero
dc.description.abstractThe recent global concern to mitigate the ecological impact on energy production has promoted the search for alternatives that allow a better use of resources. In this panorama, the cogeneration process appears as a solution seen with good eyes thanks to its great efficiency, which is why many institutions and companies have opted for the transition from the traditional system of energy production to cogeneration. This article develops the selection of the best alternative among different suppliers to implement a cogeneration system in an energy production plant, taking into account economic factors, selecting the one that represents the greatest profitability in the shortest time.eng
dc.publisherInternational Journal of Energy Economics and Policyspa
dc.relation.ispartofInternational Journal of Energy Economics and Policy. vol 12 No°2[2022]
dc.rights© 2022 by the authorseng
dc.titleA Complete Prefeasibility Evaluation of On-Site Energy Generation Systemeng
dc.typeArtículo de revistaspa
dcterms.referencesAraújo, L., da Silva, E.T. (2010), Comparative Analysis of Cogeneration Power Plants Optimization Based on Stochastics Methods Using Superstructure and Process Simulator. Encit 2010: 13. Brazilian Congress of Thermal Sciences and Engineering. New Challenges in Thermal Sciences, Uberlandia, Mg (Brazil), 5-10 December;
dcterms.referencesCardona, E., Piacentino, A. (2003), A methodology for sizing a trigeneration plant in mediterranean areas. Applied Thermal Engineering, 23(13), 1665-1680spa
dcterms.referencesCerqueira, G., Da Araújo, S.A., Nebra, S.A. (1999), Cost attribution methodologies in cogeneration systems. Energy Conversion and Management, 40(15),
dcterms.referencesDaniel, T.E., Goldberg, H.M. (1981), Dynamic equilibrium energy modeling: The canadian balance model. Operations Research, 29(5),
dcterms.referencesFrangopoulos, C.A. (1994), Application of the thermoeconomic functional approach to the cgam problem. Energy, 19(3),
dcterms.referencesFrangopoulos, C.A. (2012), A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the european directive. Energy, 45(1),
dcterms.referencesHernández-Santoyo, J., Sánchez-Cifuentes, A. (2003), Trigeneration: an alternative for energy savings. Applied Energy, 76(1),
dcterms.referencesHeteu, T., Magloire, P., Bolle, L. (2002), Economie D’énergie en trigénération. International Journal of Thermal Sciences, 41(12),
dcterms.referencesLozano, M. (2001), Diseño optimo de sistemas simples de cogeneracion. Informacion Tecnologica, 12,
dcterms.referencesLozano, M.A., Ramos, J. (2010), Thermodynamic and economic analysis for simple cogeneration systems. Cogeneration and Distributed Generation Journal, 25(3),
dcterms.referencesLucas, K. (2000), On the thermodynamics of cogeneration. International Journal of Thermal Sciences, 39(9),
dcterms.referencesLund, H., Andersen, A.N. (2005), Optimal designs of small chp plants in a market with fluctuating electricity prices. Energy Conversion and Management, 46(6),
dcterms.referencesManne, A.S., Ed. (1985), Economic Equilibrium: Model Formulation and Solution. Berlin, Heidelberg: Springerspa
dcterms.referencesNagurney, A. (1987), Computational comparisons of spatial price equilibrium methods. Journal of Regional Science, 27, 55-76spa
dcterms.referencesOnovwiona, H.I., Ugursal, V.I. (2006), Residential cogeneration systems: review of the current technology. Renewable and Sustainable Energy Reviews, 10(5),
dcterms.referencesSamuelson, P.A. (1983), Foundations of Economic Analysis. Enlarged E. Cambridge (Massachusetts): Harvard University
dcterms.referencesTemir, G., Bilge, D. (2004), Thermoeconomic analysis of a trigeneration system. Applied Thermal Engineering, 24(17), 2689-2699. Tovar, I., Balbis, M. (2007), Propuesta de guía metodológica para la García, et al.: A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems International Journal of Energy Economics and Policy | Vol 12 • Issue 2 • 2022 479 selección de esquemas de cogeneración en la industria de procesos mediante la tecnología pinch. Prospectiva, 5(2),
dcterms.referencesTsatsaronis, G. (1993), Thermoeconomic analysis and optimization of energy systems. Progress in Energy and Combustion Science, 19(3),
dcterms.referencesVukašinović, V., Gordić, D., Babić, M., Jelić, D., Končalović, D. (2016), Review of efficiencies of cogeneration units using internal combustion engines. International Journal of Green Energy, 13(5),
dcterms.referencesWu, Y.J., David Fuller, J. (1995), Introduction of geometric, distributed lag demand into energy-process models. Energy, 20(7),
dcterms.referencesYokoyama, R., Ito, K., Kamimura, K., Miyasaka, F. (1994), Development of a general-purpose optimal operational planning system for energy supply plants. Journal of Energy Resources Technology, 116(4),
dc.contributor.corporatenameInternational Journal of Energy Economics and Policyspa
dc.relation.citationeditionvol. 12 No° 2 [2022]spa
dc.relation.citesGarcia, G. R., Castillo, D. V., & Rojas, J. P. (2022). A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems. International Journal of Energy Economics and Policy, 12(2), 474–479.
dc.relation.ispartofjournalInternational Journal of Energy Economics and Policyspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalInternal Rate of Returneng
dc.subject.proposalNet Present Valueeng

Files in this item


This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors
Except where otherwise noted, this item's license is described as © 2022 by the authors