dc.contributor.author | Orjuela Abril, Sofía | |
dc.contributor.author | FONSECA VIGOYA, MARLEN DEL SOCORRO | |
dc.contributor.author | Pardo García, Carlos Eduardo | |
dc.date.accessioned | 2022-11-16T15:57:35Z | |
dc.date.available | 2022-11-16T15:57:35Z | |
dc.date.issued | 2022-04-07 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6519 | |
dc.description.abstract | In the present investigation, a study is carried out using numerical simulation on the effects
of cylinder deactivation on tribological parameters and emissions in an internal combustion engine.
For the development of the research, a tribological model was used to predict the characteristics of the
lubrication film, friction conditions, blow-by gas, and deformation of the piston rings. Additionally,
the construction of a CFD model was carried out to describe the kinematic movement of the engine
piston. The analysis of results allowed for the demonstration of the active cylinders presenting an
increase of 21.53% and 7.65% in the pressure and temperature in the cylinder wall. Additionally, the
active cylinders present a reduction of 11.33% in the minimum thickness of the lubrication film and
an increase in the friction force due to asperities, which implies an increase of 33% in power losses
due to friction. The implementation of technologies such as cylinder deactivation causes an increase
in combustion gas leaks caused by the increase in pressure of the active cylinders. However, the use
of this technology allows reducing 9.09%, 8.26%, and 7.41% in CO, HC, and NO emissions. Although
the use of technologies such as cylinder deactivation allows significant fuel savings, it is necessary to
consider the negative effects caused by this technology, such as the increase in combustion gas leaks
and the increase in power loss by the greatest frictional forces. | eng |
dc.format.extent | Paginas 17 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Lubricantes | spa |
dc.relation.ispartof | Programa de Administración de Empresas, Universidad Francisco de Paula Santander, San José de Cúcuta, 540001, Colombia; García, C.P., Programa de Ingeniería de Sistemas, Universidad Francisco de Paula Santander, San José de Cúcuta, 540001, Colombia. | |
dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.scopus.com/record/display.uri?eid=2-s2.0-85129107203&doi=10.3390%2flubricants10040060&origin=inward&txGid=7946c84f18d87a5f0731f04b1bb54623 | spa |
dc.title | study of the Cylinder Deactivation on Tribological Parameters and Emissions in an Internal Combustion Engine | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Gurt, A.; Khonsari, M. The use of entropy in modeling the mechanical degradation of grease. Lubricants 2019, 7, 82. | spa |
dcterms.references | Chong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77. | spa |
dcterms.references | Ochoa, G.V.; Prada, G.; Duarte-Forero, J. Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle. J. Clean. Prod. 2020, 274, 122838–122857. | spa |
dcterms.references | Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. | spa |
dcterms.references | Richardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506–519. | spa |
dcterms.references | Valencia, G.; Fontalvo, A.; Duarte Forero, J. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: Thermo-economic and environmental footprint analysis. Appl. Therm. Eng. 2021, 182, 116109. | spa |
dcterms.references | Morris, N.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H. Optimisation of the piston compression ring for improved energy efficiency of high performance race engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1806–1817. | spa |
dcterms.references | Oglieve, C.J.; Mohammadpour, M.; Rahnejat, H. Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 883–899. | spa |
dcterms.references | Fitzsimons, B. Introduction to the importance of fuel efficiency and role of the Encyclopedic research project. In Proceedings of the IMechE Seminar: A Drive for Fuel Efficiency, Loughborough, UK, 21 September 2011. | spa |
dcterms.references | Forero, J.D.; Ochoa, G.V.; Alvarado, W.P. Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine. Lubricants 2020, 8, 97. | spa |
dcterms.references | Menzel, G.; Och, S.H.; Mariani, V.C.; Moura, L.M.; Domingues, E. Multi-objective optimization of the volumetric and thermal efficiencies applied to a multi-cylinder internal combustion engine. Energy Convers. Manag. 2020, 216, 112930. | spa |
dcterms.references | Balakheli, M.M.; Chahartaghi, M.; Sheykhi, M.; Hashemian, S.M.; Rafiee, N. Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energy Convers. Manag. 2020, 203, 112253. | spa |
dcterms.references | Cao, J.; Jia, M.; Niu, B.; Chang, Y.; Xu, Z.; Liu, H. Establishment of an improved heat transfer model based on an enhanced thermal wall function for internal combustion engines operated under different combustion modes. Energy Convers. Manag. 2019, 195, 748–759. | spa |
dcterms.references | Agarwal, A.K.; Mustafi, N.N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew. Sustain. Energy Rev. 2021, 137, 110624. | spa |
dcterms.references | Tornatore, C.; Bozza, F.; De Bellis, V.; Teodosio, L.; Valentino, G.; Marchitto, L. Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine. Energy 2019, 172, 968–976. | spa |
dcterms.references | Dong, H.; Zhao, Z.; Fu, J.; Liu, J.; Li, J.; Liang, K.; Zhou, Q. Experiment and simulation investigation on energy management of a gasoline vehicle and hybrid turbocharger optimization based on equivalent consumption minimization strategy. Energy Convers. Manag. 2020, 226, 113518. | spa |
dcterms.references | Nazoktabar, M.; Jazayeri, S.A.; Parsa, M.; Ganji, D.D.; Arshtabar, K. Controlling the optimal combustion phasing in an HCCI engine based on load demand and minimum emissions. Energy 2019, 182, 82–92. | spa |
dcterms.references | Yusri, I.M.; Mamat, R.; Najafi, G.; Razman, A.; Awad, O.I.; Azmi, W.H.; Ishak, W.F.W.; Shaiful, A.I.M. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev. 2017, 77, 169–181. | spa |
dcterms.references | García, A.; Monsalve-Serrano, J.; Martínez-Boggio, S.; Wittek, K. Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy 2020, 195, 117039. | spa |
dcterms.references | Wittek, K.; Geiger, F.; Vaz, M.G.J. Characterization of the system behaviour of a variable compression ratio (VCR) connecting rod with eccentrically piston pin suspension and hydraulic moment support. Energy Convers. Manag. 2020, 213, 112814. | spa |
dcterms.references | López, J.J.; Garcia, A.; Monsalve-Serrano, J.; Cogo, V.; Wittek, K. Potential of a two-stage variable compression ratio downsized spark ignition engine for passenger cars under different driving conditions. Energy Convers. Manag. 2020, 203, 112251. | spa |
dcterms.references | Muhamad Said, M.F.; Latiff, Z.A.; Zainal Abidin, S.F.; Zahari, I. Investigation of Intake Valve Strategy on the Cylinder Deactivation Engine. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2016; Volume 819, pp. 459–465. | spa |
dcterms.references | Zhao, J.; Xi, Q.; Wang, S.; Wang, S. Improving the partial-load fuel economy of 4-cylinder SI engines by combining variable valve timing and cylinder-deactivation through double intake manifolds. Appl. Therm. Eng. 2018, 141, 245–256. | spa |
dcterms.references | Singh, D.; Gu, F.; Fieldhouse, J.D.; Singh, N.; Singal, S.K. Prediction and analysis of engine friction power of a diesel engine influenced by engine speed, load, and lubricant viscosity. Adv. Tribol. 2014, 2014, 928015. | spa |
dcterms.references | Bewsher, S.R.; Turnbull, R.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H.; Offner, G.; Knaus, O. Effect of cylinder de-activation on the tribological performance of compression ring conjunction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 997–1006. | spa |
dcterms.references | Tian, T. Dynamic behaviours of piston rings and their practical impact. Part 2: Oil transport, friction and wear of ring/liner interface and the effects of piston and ring dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248. | spa |
dcterms.references | Guo, Y.; Lu, X.; Li, W.; He, T.; Zou, D. A mixed-lubrication model considering elastoplastic contact for a piston ring and application to a ring pack. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 174–188. | spa |
dcterms.references | Patir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubr. Technol. 1978, 100, 12–17. | spa |
dcterms.references | Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. | spa |
dcterms.references | Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245. | spa |
dcterms.references | Gu, C.; Meng, X.; Xie, Y.; Kong, X. Performance of surface texturing during start-up under starved and mixed lubrication. J. Tribol. 2017, 139, 11702. | spa |
dcterms.references | Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305. | spa |
dcterms.references | Teodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi-physics Approach to System Dynamics. In Tribology and Interface Engineering Series; Elsevier: Amsterdam, The Netherlands, 2005; Volume 48, pp. 725–737. | spa |
dcterms.references | Greenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633. | spa |
dcterms.references | Turnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991–106002. | spa |
dcterms.references | Theaker, M.; Rahmani, R.; Rahnejat, H. Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation. In Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Italy, 6–9 May 2012; pp. 885–892. | spa |
dcterms.references | Popoola, O.; Cao, Y. The influence of turbulence models on the accuracy of CFD analysis of a reciprocating mechanism driven heat loop. Case Stud. Therm. Eng. 2016, 8, 277–290. | spa |
dcterms.references | Zavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions-A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230. | spa |
dcterms.references | Tsujiuchi, N.; Koizumi, T.; Hamada, K.; Okamura, M.; Tsukijima, H. Optimization of profile for reduction of piston slap excitation. In SAE Technical Papers; SAE: Warrendale, PA, USA, 2004. | spa |
dcterms.references | Gore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354. | spa |
dcterms.references | Morris, N.; Mohammadpour, M.; Rahmani, R.; Johns-Rahnejat, P.M.; Rahnejat, H.; Dowson, D. Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing. Tribol. Int. 2018, 120, 243–254. | spa |
dcterms.references | Wang, X.; Stone, C.R. A study of combustion, instantaneous heat transfer, and emissions in a spark ignition engine during warm-up. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 607–618. | spa |
dc.identifier.doi | 10.3390/lubricants10040060 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol. 10 N°. 4 (2022) | spa |
dc.relation.citationendpage | 17 | spa |
dc.relation.citationissue | 4 (2022) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 10 | spa |
dc.relation.cites | Orjuela Abril, S.; Fonseca-Vigoya, M.D.S.; García, C.P. Study of the Cylinder Deactivation on Tribological Parameters and Emissions in an Internal Combustion Engine. Lubricants 2022, 10, 60. https://doi.org/10.3390/ lubricants10040060 | |
dc.relation.ispartofjournal | Lubricants | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | cylinder deactivation | eng |
dc.subject.proposal | power loss | eng |
dc.subject.proposal | piston compression ring | eng |
dc.subject.proposal | blow-by gas | eng |
dc.subject.proposal | emissions | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |