Processing and in vitro bioactivity of a β-Ca3(PO4)2-CaMg(SiO3)2 ceramic with the eutectic composition
Procesamiento y bioactividad in vitro de cerámicas de β-Ca3(PO4)2-CaMg(SiO3)2 Con composición eutéctica
dc.contributor.author | García-Páez, Ismael H. | |
dc.contributor.author | de Aza, Antonio H. | |
dc.contributor.author | Peña, Pilar García | |
dc.contributor.author | Baudin, Carmen | |
dc.contributor.author | Córdoba Tuta, Elcy María | |
dc.contributor.author | Rodríguez, Miguel A. | |
dc.date.accessioned | 2021-11-04T14:51:02Z | |
dc.date.available | 2021-11-04T14:51:02Z | |
dc.date.issued | 2016-02 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/644 | |
dc.description.abstract | In this study, a dense bioactive ceramic, with nominal composition (wt.%) 40 Ca3(PO4)2–60 CaMg(SiO3)2, was prepared by solid state sintering of homogeneous compacted mixtures of fine synthetic Ca3(PO4)2 and CaMg(SiO3)2 powders. The results obtained by X-ray diffraction and field emission scanning electron microscopy with microanalysis indicate that the ceramic composite showed a fine grained and homogeneous microstructure consisting of diopside (CaMg(SiO3)2) and whitlockite (-Ca3(PO4)2ss) grains with very small amounts of apatite. The flexural strength and elastic modulus values of the composite are similar to those of cortical human bone. Bioactivity was experimentally evaluated by examining in vitro apatite formation in simulated body fluid (SBF). In addition, a simulation of the dissolution properties of the different phases present in the material in SBF was carried out by thermodynamic calculations, with the purpose of understanding the in vitro results obtained. The experimental results demonstrated that, during soaking in SBF, the grains of whitlockite dissolved preferentially than those of diopside, leaving a porous surface layer rich in diopside. Subsequently, partial dissolution of the remaining diopside occurred and the porous surface of the ceramic became coated by a bone-like apatite layer after 7 days in SBF. This bioceramic containing -Ca3(PO4)2 and CaMg(SiO3)2 is expected to be useful to fabricate scaffolds for bone repair | eng |
dc.description.abstract | En este estudio se han preparado un material cerámico denso, con una composición nominal (% en peso) de 40 Ca3(PO4) – 60 (SiO3)2, mediante sinterización en estado sólido de polvos finos de Ca3(PO4)2 y CaMg(SiO3)2 sintéticos. Los resultados obtenidos por DRX y microscopia electrónica de barrido de emisión de campo con microanálisis indican que los materiales obtenidos presentan una microestructura homogénea, con un tamano˜ de grano fino, compuesta por granos de diópsido (CaMg(SiO3)2) y whitlockita (-Ca3(PO4)2ss) junto con muy pequenas ˜ cantidades de apatita. Los valores de tensión de fractura y el módulo de elasticidad del material optimizado son similares a los del hueso humano. La bioactividad del material se ha evaluado experimentalmente estudiando la formación in vitro de apatita en suero fisiológico simulado. Con el objetivo de comprender los resultados obtenidos en los estudios in vitro se ha simulado la disolución de las diferentes fases presentes en el material en SFA mediante cálculos termodinámicos. Durante el experimento in vitro en SFA los granos de whitlockita se disuelven más rápidamente que los de diópsido lo que origina una superficie porosa rica en diópsido. Posteriormente, tiene lugar la disolución del diópsido remanente en la superficie del material de -Ca3(PO4)2-CaMg(SiO3)2 que, después de siete días en SFA, queda recubierta por una capa de apatita. Se espera que este material biocerámico de -Ca3(PO4) y CaMg(SiO3)2 sea útil para la fabricación de andamiajes para reparación ósea. | spa |
dc.format.extent | 12 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Boletín de la Sociedad Española de Cerámica y Vidrio | spa |
dc.relation.ispartof | Boletín de la Sociedad Española de Cerámica y Vidrio | |
dc.rights | /© 2015 SECV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | eng |
dc.source | https://www.sciencedirect.com/science/article/pii/S0366317515001077#! | spa |
dc.title | Processing and in vitro bioactivity of a β-Ca3(PO4)2-CaMg(SiO3)2 ceramic with the eutectic composition | eng |
dc.title | Procesamiento y bioactividad in vitro de cerámicas de β-Ca3(PO4)2-CaMg(SiO3)2 Con composición eutéctica | spa |
dc.type | Artículo de revista | spa |
dcterms.references | L.L. Hench Bioceramics J. Am. Ceram. Soc., 81 (7) (1998), pp. 1705-1728 | spa |
dcterms.references | G.M.L. Dalmônico, D.F. Silva, P.F. Franczak, N.H.A. Camargo, M.A. Rodríguez Elaboration biphasic calcium phosphate nanostructured powders Bol. Soc. Esp. Cerám. Vidr., 54 (1) (2015), pp. 37-43, 10.1016/j.bsecv.2015.02.006 | spa |
dcterms.references | R.G. Carrodeguas, S. De Aza α-Tricalcium phosphate: synthesis, properties and biomedical applications Acta Biomater., 7 (10) (2011), pp. 3536-3546 | spa |
dcterms.references | S.V. Dorozhkin Calcium orthophosphate cements for biomedical application J. Mater. Sci., 43 (2008), pp. 3028-3057 | spa |
dcterms.references | M. Vallet-Regí Cerámicas en el mundo biológico Bol. Soc. Esp. Ceram. Vidr., 53 (2) (2014), pp. 53-59, 10.3989/cyv.82014 | spa |
dcterms.references | S.D. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response Biomaterials, 22 (2001), pp. 135-150 | spa |
dcterms.references | J. Chevalier, L. Gremillard Ceramics for medical applications: a picture for the next 20 years J. Eur. Ceram. Soc., 29 (2009), pp. 1245-1255 | spa |
dcterms.references | P.N. De Aza, A.H. De Aza, S. De Aza Crystalline bioceramic materials Bol. Soc. Esp. de Cerám. Vidr., 44 (3) (2005), pp. 135-145 | spa |
dcterms.references | J.W. Reid, A. Pietak, M. Sayer, D. Dunfield, T.J.N. Smith Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system Biomaterials, 26 (2005), pp. 2887-2897 | spa |
dcterms.references | P.N. De Aza, Z.B. Luklinska, M. Anseau Bioactivity of diopside ceramic in human parotid saliva J. Biomed. Mater. Res. B: Appl. Biomater., 73B (2005), pp. 54-60, 10.1002/jbm.b.30187 | spa |
dcterms.references | G. Ruseska, E. Fidancevska, J. Bossert Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH)2–Ca3(PO4)2 Composites Sci. Sinter., 38 (2006), pp. 245-253, 10.2298/SOS0603245R | spa |
dcterms.references | T. Nonami, S. Tsutsumi Study of diopside ceramics for biomaterials J. Mater. Sci. Mater. Med., 10 (18) (1999), pp. 475-479 | spa |
dcterms.references | M. Magallanes-Perdomo, A.Y. Mateus, A.H. De Aza, S. Texeira, F.J. Monteiro, S. De Aza, P. Pena In vitro study of the proliferation and growth of human bone marrow cells on apatite–wollastonite 2M glass-ceramics Acta Biomater., 6 (2010), pp. 2254-2263 | spa |
dcterms.references | A. Bandyopadhyay, S. Bernard, W. Xue, Susmita Bose Calcium phosphate resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants J. Am. Ceram. Soc., 89 (9) (2006), pp. 2675-2688 | spa |
dcterms.references | M. Ashizuka, E. Ishida Mechanical properties of silicate glass-ceramics containing tricalcium phosphate J. Mater. Sci., 32 (1997), pp. 185-188 | spa |
dcterms.references | M. Kamitakara, C. Ohtsuki, Y. Kozaka, S. Ogata, M. Tanihara, T. Miyazaki Preparation of porous glass-ceramics containing whitloklite and diopside for bone repair J. Ceram. Soc. Jpn., 114 (1) (2006), pp. 82-86 | spa |
dcterms.references | R.G. Carrodeguas, E. Córdoba, A.H. De Aza, S. De Aza, P. Pena Bone-like apatite-forming ability of Ca3(PO4)2–CaMg(SiO3)2 ceramics in simulated body fluid M. Prado, C. Zavaglia (Eds.), Bioceramics 21 – Key Engineering Materials, vol. 396–398 (2009), pp. 103-106 | spa |
dcterms.references | M. Cristina Guerrero-Lecuona, M. Canillas, P. Pena, M.A. Rodríguez, A.H. De Aza Different in vitro behavior of two Ca3(PO4)2 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition Bol. Soc. Esp. de Cerám. Vidr., 45 (5) (2015), pp. 181-188 | spa |
dcterms.references | T. Sata Phase relationship in the system 3CaOP2O5–CaO·MgO·2SiO2–SiO2 Bull. Chem. Soc. Jpn., 32 (1959), pp. 105-108 | spa |
dcterms.references | R. García-Carrodeguas, A.H. De Aza, I. García-Páez, S. De Aza, P. Pena Revisiting the phase-equilibrium diagram of the Ca3(PO4)2–CaMg(SiO3)2 system J. Am. Ceram. Soc., 93 (2) (2010), pp. 561-569 | spa |
dcterms.references | R. García-Carrodeguas, A.H. De Aza, X. Turrillas, P. Pena, S. De Aza New approach to the β-α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications J. Am. Ceram. Soc., 91 (4) (2010), pp. 1281-1286 | spa |
dcterms.references | M.A. Sainz, P. Pena, S. Serena, A. Caballero Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation Acta Biomater., 6 (2010), pp. 2797-2807 | spa |
dcterms.references | T. Kokubo, H. Takadama How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27 (2006), pp. 2907-2915 | spa |
dcterms.references | M. Descamps, L. Boilet, G. Moreau, A. Tricoteaux, J. Lud, A. Leriche, V. Lardot, F. Cambier Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing J. Eur. Ceram. Soc., 33 (7) (2013), pp. 1263-1270 | spa |
dcterms.references | Thermo-Calc Software, Stockholm, Sweden. http://www.thermocalc.com/. | spa |
dcterms.references | HSC Chemistry, Outokumpu Research Oy, Pori, Finland, A. Roine. http://www.chemistrysoftware.com. | spa |
dcterms.references | T. Sata Phase relationship in the system 3CaOP2O5–CaO·MgO·2SiO2–SiO2 J. Ceram. Soc. Jpn., 105 (1) (1997), pp. 26-30 | spa |
dcterms.references | W.D. Kingery, H.K. Bowen, D.R. Uhlmann Thermal properties Introduction to ceramics, Wiley – Interscience, John Wiley &Sons, USA (1979), pp. 583-645 | spa |
dcterms.references | I.H. García-Páez, R. García-Carrodeguas, A.H. De Aza, C. Baudín, P. Pena Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics J. Mech. Behav. Biomed. Mater., 30 (2) (2014), pp. 1-16 | spa |
dc.identifier.doi | https://doi.org/10.1016/j.bsecv.2015.10.004 | |
dc.publisher.place | España | spa |
dc.relation.citationedition | Vol.55 No.1.(2016) | spa |
dc.relation.citationendpage | 12 | spa |
dc.relation.citationissue | 1(2016) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 55 | spa |
dc.relation.cites | García-Páez, I. H., Pena, P., Baudin, C., Rodríguez, M. A., Cordoba, E., & Antonio, H. (2016). Processing and in vitro bioactivity of a β-Ca3 (PO4) 2–CaMg (SiO3) 2 ceramic with the eutectic composition. boletín de la sociedad española de cerámica y vidrio, 55(1), 1-12. | |
dc.relation.ispartofjournal | Boletín de la Sociedad Española de Cerámica y Vidrio | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Tricalcium phosphate | eng |
dc.subject.proposal | Fosfato tricálcico | spa |
dc.subject.proposal | Diopside | eng |
dc.subject.proposal | Diópsido | spa |
dc.subject.proposal | Bioactivity | eng |
dc.subject.proposal | Bioactividad | spa |
dc.subject.proposal | Simulated body fluid | eng |
dc.subject.proposal | Suero fisiológico simulado | spa |
dc.subject.proposal | Bioceramics | eng |
dc.subject.proposal | Bioceramicas | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |