Show simple item record


Procesamiento y bioactividad in vitro de cerámicas de β-Ca3(PO4)2-CaMg(SiO3)2 Con composición eutéctica

dc.contributor.authorGarcía-Páez, Ismael H.
dc.contributor.authorde Aza, Antonio H.
dc.contributor.authorPeña, Pilar García
dc.contributor.authorBaudin, Carmen
dc.contributor.authorCórdoba Tuta, Elcy María
dc.contributor.authorRodríguez, Miguel A.
dc.date.accessioned2021-11-04T14:51:02Z
dc.date.available2021-11-04T14:51:02Z
dc.date.issued2016-02
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/644
dc.description.abstractIn this study, a dense bioactive ceramic, with nominal composition (wt.%) 40 Ca3(PO4)2–60 CaMg(SiO3)2, was prepared by solid state sintering of homogeneous compacted mixtures of fine synthetic Ca3(PO4)2 and CaMg(SiO3)2 powders. The results obtained by X-ray diffraction and field emission scanning electron microscopy with microanalysis indicate that the ceramic composite showed a fine grained and homogeneous microstructure consisting of diopside (CaMg(SiO3)2) and whitlockite (-Ca3(PO4)2ss) grains with very small amounts of apatite. The flexural strength and elastic modulus values of the composite are similar to those of cortical human bone. Bioactivity was experimentally evaluated by examining in vitro apatite formation in simulated body fluid (SBF). In addition, a simulation of the dissolution properties of the different phases present in the material in SBF was carried out by thermodynamic calculations, with the purpose of understanding the in vitro results obtained. The experimental results demonstrated that, during soaking in SBF, the grains of whitlockite dissolved preferentially than those of diopside, leaving a porous surface layer rich in diopside. Subsequently, partial dissolution of the remaining diopside occurred and the porous surface of the ceramic became coated by a bone-like apatite layer after 7 days in SBF. This bioceramic containing -Ca3(PO4)2 and CaMg(SiO3)2 is expected to be useful to fabricate scaffolds for bone repaireng
dc.description.abstractEn este estudio se han preparado un material cerámico denso, con una composición nominal (% en peso) de 40 Ca3(PO4) – 60 (SiO3)2, mediante sinterización en estado sólido de polvos finos de Ca3(PO4)2 y CaMg(SiO3)2 sintéticos. Los resultados obtenidos por DRX y microscopia electrónica de barrido de emisión de campo con microanálisis indican que los materiales obtenidos presentan una microestructura homogénea, con un tamano˜ de grano fino, compuesta por granos de diópsido (CaMg(SiO3)2) y whitlockita (-Ca3(PO4)2ss) junto con muy pequenas ˜ cantidades de apatita. Los valores de tensión de fractura y el módulo de elasticidad del material optimizado son similares a los del hueso humano. La bioactividad del material se ha evaluado experimentalmente estudiando la formación in vitro de apatita en suero fisiológico simulado. Con el objetivo de comprender los resultados obtenidos en los estudios in vitro se ha simulado la disolución de las diferentes fases presentes en el material en SFA mediante cálculos termodinámicos. Durante el experimento in vitro en SFA los granos de whitlockita se disuelven más rápidamente que los de diópsido lo que origina una superficie porosa rica en diópsido. Posteriormente, tiene lugar la disolución del diópsido remanente en la superficie del material de -Ca3(PO4)2-CaMg(SiO3)2 que, después de siete días en SFA, queda recubierta por una capa de apatita. Se espera que este material biocerámico de -Ca3(PO4) y CaMg(SiO3)2 sea útil para la fabricación de andamiajes para reparación ósea.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBoletín de la Sociedad Española de Cerámica y Vidriospa
dc.relation.ispartofBoletín de la Sociedad Española de Cerámica y Vidrio
dc.rights/© 2015 SECV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).eng
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0366317515001077#!spa
dc.titleProcessing and in vitro bioactivity of a β-Ca3(PO4)2-CaMg(SiO3)2 ceramic with the eutectic compositioneng
dc.titleProcesamiento y bioactividad in vitro de cerámicas de β-Ca3(PO4)2-CaMg(SiO3)2 Con composición eutécticaspa
dc.typeArtículo de revistaspa
dcterms.referencesL.L. Hench Bioceramics J. Am. Ceram. Soc., 81 (7) (1998), pp. 1705-1728spa
dcterms.referencesG.M.L. Dalmônico, D.F. Silva, P.F. Franczak, N.H.A. Camargo, M.A. Rodríguez Elaboration biphasic calcium phosphate nanostructured powders Bol. Soc. Esp. Cerám. Vidr., 54 (1) (2015), pp. 37-43, 10.1016/j.bsecv.2015.02.006spa
dcterms.referencesR.G. Carrodeguas, S. De Aza α-Tricalcium phosphate: synthesis, properties and biomedical applications Acta Biomater., 7 (10) (2011), pp. 3536-3546spa
dcterms.referencesS.V. Dorozhkin Calcium orthophosphate cements for biomedical application J. Mater. Sci., 43 (2008), pp. 3028-3057spa
dcterms.referencesM. Vallet-Regí Cerámicas en el mundo biológico Bol. Soc. Esp. Ceram. Vidr., 53 (2) (2014), pp. 53-59, 10.3989/cyv.82014spa
dcterms.referencesS.D. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response Biomaterials, 22 (2001), pp. 135-150spa
dcterms.referencesJ. Chevalier, L. Gremillard Ceramics for medical applications: a picture for the next 20 years J. Eur. Ceram. Soc., 29 (2009), pp. 1245-1255spa
dcterms.referencesP.N. De Aza, A.H. De Aza, S. De Aza Crystalline bioceramic materials Bol. Soc. Esp. de Cerám. Vidr., 44 (3) (2005), pp. 135-145spa
dcterms.referencesJ.W. Reid, A. Pietak, M. Sayer, D. Dunfield, T.J.N. Smith Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system Biomaterials, 26 (2005), pp. 2887-2897spa
dcterms.referencesP.N. De Aza, Z.B. Luklinska, M. Anseau Bioactivity of diopside ceramic in human parotid saliva J. Biomed. Mater. Res. B: Appl. Biomater., 73B (2005), pp. 54-60, 10.1002/jbm.b.30187spa
dcterms.referencesG. Ruseska, E. Fidancevska, J. Bossert Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH)2–Ca3(PO4)2 Composites Sci. Sinter., 38 (2006), pp. 245-253, 10.2298/SOS0603245Rspa
dcterms.referencesT. Nonami, S. Tsutsumi Study of diopside ceramics for biomaterials J. Mater. Sci. Mater. Med., 10 (18) (1999), pp. 475-479spa
dcterms.referencesM. Magallanes-Perdomo, A.Y. Mateus, A.H. De Aza, S. Texeira, F.J. Monteiro, S. De Aza, P. Pena In vitro study of the proliferation and growth of human bone marrow cells on apatite–wollastonite 2M glass-ceramics Acta Biomater., 6 (2010), pp. 2254-2263spa
dcterms.referencesA. Bandyopadhyay, S. Bernard, W. Xue, Susmita Bose Calcium phosphate resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants J. Am. Ceram. Soc., 89 (9) (2006), pp. 2675-2688spa
dcterms.referencesM. Ashizuka, E. Ishida Mechanical properties of silicate glass-ceramics containing tricalcium phosphate J. Mater. Sci., 32 (1997), pp. 185-188spa
dcterms.referencesM. Kamitakara, C. Ohtsuki, Y. Kozaka, S. Ogata, M. Tanihara, T. Miyazaki Preparation of porous glass-ceramics containing whitloklite and diopside for bone repair J. Ceram. Soc. Jpn., 114 (1) (2006), pp. 82-86spa
dcterms.referencesR.G. Carrodeguas, E. Córdoba, A.H. De Aza, S. De Aza, P. Pena Bone-like apatite-forming ability of Ca3(PO4)2–CaMg(SiO3)2 ceramics in simulated body fluid M. Prado, C. Zavaglia (Eds.), Bioceramics 21 – Key Engineering Materials, vol. 396–398 (2009), pp. 103-106spa
dcterms.referencesM. Cristina Guerrero-Lecuona, M. Canillas, P. Pena, M.A. Rodríguez, A.H. De Aza Different in vitro behavior of two Ca3(PO4)2 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition Bol. Soc. Esp. de Cerám. Vidr., 45 (5) (2015), pp. 181-188spa
dcterms.referencesT. Sata Phase relationship in the system 3CaOP2O5–CaO·MgO·2SiO2–SiO2 Bull. Chem. Soc. Jpn., 32 (1959), pp. 105-108spa
dcterms.referencesR. García-Carrodeguas, A.H. De Aza, I. García-Páez, S. De Aza, P. Pena Revisiting the phase-equilibrium diagram of the Ca3(PO4)2–CaMg(SiO3)2 system J. Am. Ceram. Soc., 93 (2) (2010), pp. 561-569spa
dcterms.referencesR. García-Carrodeguas, A.H. De Aza, X. Turrillas, P. Pena, S. De Aza New approach to the β-α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications J. Am. Ceram. Soc., 91 (4) (2010), pp. 1281-1286spa
dcterms.referencesM.A. Sainz, P. Pena, S. Serena, A. Caballero Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation Acta Biomater., 6 (2010), pp. 2797-2807spa
dcterms.referencesT. Kokubo, H. Takadama How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27 (2006), pp. 2907-2915spa
dcterms.referencesM. Descamps, L. Boilet, G. Moreau, A. Tricoteaux, J. Lud, A. Leriche, V. Lardot, F. Cambier Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing J. Eur. Ceram. Soc., 33 (7) (2013), pp. 1263-1270spa
dcterms.referencesThermo-Calc Software, Stockholm, Sweden. http://www.thermocalc.com/.spa
dcterms.referencesHSC Chemistry, Outokumpu Research Oy, Pori, Finland, A. Roine. http://www.chemistrysoftware.com.spa
dcterms.referencesT. Sata Phase relationship in the system 3CaOP2O5–CaO·MgO·2SiO2–SiO2 J. Ceram. Soc. Jpn., 105 (1) (1997), pp. 26-30spa
dcterms.referencesW.D. Kingery, H.K. Bowen, D.R. Uhlmann Thermal properties Introduction to ceramics, Wiley – Interscience, John Wiley &Sons, USA (1979), pp. 583-645spa
dcterms.referencesI.H. García-Páez, R. García-Carrodeguas, A.H. De Aza, C. Baudín, P. Pena Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics J. Mech. Behav. Biomed. Mater., 30 (2) (2014), pp. 1-16spa
dc.identifier.doihttps://doi.org/10.1016/j.bsecv.2015.10.004
dc.publisher.placeEspañaspa
dc.relation.citationeditionVol.55 No.1.(2016)spa
dc.relation.citationendpage12spa
dc.relation.citationissue1(2016)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume55spa
dc.relation.citesGarcía-Páez, I. H., Pena, P., Baudin, C., Rodríguez, M. A., Cordoba, E., & Antonio, H. (2016). Processing and in vitro bioactivity of a β-Ca3 (PO4) 2–CaMg (SiO3) 2 ceramic with the eutectic composition. boletín de la sociedad española de cerámica y vidrio, 55(1), 1-12.
dc.relation.ispartofjournalBoletín de la Sociedad Española de Cerámica y Vidriospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalTricalcium phosphateeng
dc.subject.proposalFosfato tricálcicospa
dc.subject.proposalDiopsideeng
dc.subject.proposalDiópsidospa
dc.subject.proposalBioactivityeng
dc.subject.proposalBioactividadspa
dc.subject.proposalSimulated body fluideng
dc.subject.proposalSuero fisiológico simuladospa
dc.subject.proposalBioceramicseng
dc.subject.proposalBioceramicasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record