Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Páez, Ismael H.
dc.contributor.authorde Aza, Antonio H.
dc.contributor.authorParra, Juan
dc.contributor.authorBaudin, Carmen
dc.contributor.authorMartín, M. Rocío
dc.contributor.authorPena, Pilar
dc.date.accessioned2021-11-04T13:18:49Z
dc.date.available2021-11-04T13:18:49Z
dc.date.issued2017-04-20
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/640
dc.description.abstractThe objective of this work was to study the feasibility of the solid state sintering, a conventional ceramic processing method, to obtain Mg and Si co-substituted tricalcium phosphate bioceramics and composites containing diopside. A series of new Ca3(PO4)2 based ceramics has been prepared from attrition milled mixtures of synthetic Ca3(PO4)2 and CaMg(SiO3)2 powders, isostatically pressed and sintered at 1250–1300°C. Materials containing 0, 1, and 5 wt % of CaMg(SiO3)2 were constituted by β + α - Ca3(PO4)2 solid solutions while the material containing 60 wt % of CaMg(SiO3)2 was a constituted by β- Ca3(PO4)2 and CaMg(SiO3)2. The biological responses of the developed ceramics were studied in vitro using human fetal osteoblast cultures. Culture times ranged from 1 to 21 days. The new family of materials promotes the adhesion and proliferation of human osteoblasts cultured onto their surface forming a monolayer and showing a normal morphology. The results of the MTT and Alamar Blue assays showed that the soluble components extracted from the Mg/Si- co-substituted Ca3(PO4)2 and the Ca3(PO4)2-CaMg(SiO3)2 composite were noncytotoxic. The specimens with diopside exhibited a better in vitro behavior which is attributed to the release of Si and Mg ions to the culture medium, enhancing the activity of cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2266–2275, 2017.eng
dc.format.extent09 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Biomedical Materials Research Part Aspa
dc.relation.ispartofJournal of Biomedical Materials Research Part A
dc.rightsAs the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.eng
dc.sourcehttps://onlinelibrary.wiley.com/doi/10.1002/jbm.a.36093spa
dc.titleIn vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramicseng
dc.typeArtículo de revistaspa
dcterms.referencesGerhardt L-C, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3(7):3867-910.spa
dcterms.referencesJones JR. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia. 2013;9(1):4457-86.spa
dcterms.referencesThompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng H. 1998;212(2):127-36.spa
dcterms.referencesGoel A, Kapoor S, Rajagopal RR, Pascual MJ, Kim H-W, Ferreira JMF. Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation. Acta Biomaterialia. 2012 1//;8(1):361-72.spa
dcterms.referencesLefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, et al. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia. 2007 2007/06/01/;55(10):3305-13.spa
dcterms.referencesNychka JA, Mazur SLR, Kashyap S, Li D, Yang F. Dissolution of bioactive glasses: The effects of crystallinity coupled with stress. JOM. [journal article]. 2009 September 01;61(9):45-51.spa
dcterms.referencesTaherkhani S, Moztarzadeh F. Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder. Journal of Sol-Gel Science and Technology. 2016;78(3):539-49.spa
dcterms.referencesLi P, Yang Q, Zhang F, Kokubo T. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layerin vitro. Journal of Materials Science: Materials in Medicine. [journal article]. 1992;3(6):452-6.spa
dcterms.referencesYan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, et al. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006 6//;27(18):3396-403.spa
dcterms.referencesKaur P, Singh KJ, Yadav AK, Sood H, Kaur S, Kaur R, et al. Preliminary investigation of the effect of doping of copper oxide in CaO-SiO2-P2O5-MgO bioactive composition for bone repair applications. Materials Science and Engineering: C. 2018 2018/02/01/;83(Supplement C):177-86.spa
dcterms.referencesDe Aza PN, Luklinska ZB, Anseau M. Bioactivity of diopside ceramic in human parotid saliva. J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):54-60.spa
dcterms.referencesFiocco L, Elsayed H, Ferroni L, Gardin C, Zavan B, Bernardo E. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers. Materials. 2015;8(5):2480.spa
dcterms.referencesKaur P, Singh KJ, Sood H, Arora DS. Investigation of bioactive CaO-P2O5-MgO-SiO2 ceramic composition for orthopedic applications. AIP Conference Proceedings. 2017;1832(1):140028.spa
dcterms.referencesRamezani S, Emadi R, Kharaziha M, Tavangarian F. Synthesis, characterization and in vitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds. Materials Chemistry and Physics. 2017 2017/01/15/;186:415-25.spa
dcterms.referencesKazemi A, Abdellahi M, Khajeh-Sharafabadi A, Khandan A, Ozada N. Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Materials Science and Engineering: C. 2017 2017/02/01/;71:604-10.spa
dcterms.referencesParra J, Páez IHG, Aza AHD, Baudin C, Martín MR, Pena P. In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co‐substituted tricalcium phosphate ceramics. Journal of Biomedical Materials Research Part A. 2017;105(8):2266-75.spa
dcterms.referencesJuraski ADC, Rodas ACD, Elsayed H, Bernardo E, Soares VO, Daguano J. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics. Materials. 2017;10(4):425.spa
dcterms.referencesCarrodeguas RG, De Aza S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia. 2011;7(10):3536-46.spa
dcterms.referencesWu C, Ramaswamy Y, Boughton P, Zreiqat H. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(d,l-lactic acid) modification. Acta Biomaterialia. 2008;4(2):343-53.spa
dcterms.referencesDorozhkin SV. Calcium orthophosphate cements for biomedical application. Journal of Materials Science. [journal article]. 2008;43(9):3028.spa
dcterms.referencesAza Moya AHd, Aza Pendas Sd, Aza PNd. Crystalline Bioceramic Materials. Materiales biocerámicos cristalinos. 2005.spa
dcterms.referencesBohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000 2000/12/01;31:D37-D47.spa
dcterms.referencesSaid Mahraz ZA, Sahar MR, Ghoshal SK, Md Saad AP, Syahrom A. Sol–gel grown MgO-ZnO-tricalcium-phosphate nanobioceramics: evaluation of mechanical and degradation attributes. Corrosion Science. 2018 2018/02/21/.spa
dcterms.referencesDaguano JK, Rogero SO, Crovace MC, Peitl O, Strecker K, dos Santos C. Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO· P 2 O 5–SiO 2–MgO system. Journal of Materials Science: Materials in Medicine. 2013;24(9):2171-80.spa
dcterms.referencesBose S, Tarafder S, Banerjee SS, Davies NM, Bandyopadhyay A. Understanding In Vivo Response and Mechanical Property Variation in MgO, SrO and SiO(2) doped β-TCP. Bone. 2011;48(6):1282-90.spa
dcterms.referencesDomazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clinical Cases in Mineral and Bone Metabolism. 2017 May-Aug;14(2):209-16.spa
dcterms.referencesHensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28(10):1456-62.spa
dcterms.referencesKokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006 5//;27(15):2907-15.spa
dcterms.referencesKapoor S, Goel A, Pascual MJ, Ferreira JMF. Alkali-free bioactive diopside–tricalcium phosphate glass-ceramics for scaffold fabrication: Sintering and crystallization behaviours. Journal of Non-Crystalline Solids. 2016 1/15/;432, Part A:81-9.spa
dcterms.referencesWalker MM, Katz JL. Evaluation of bonding of bone to inorganic crystal surfaces. Bull Hosp Jt Dis Orthop Inst. 1983;43(2):103-8.spa
dcterms.referencesClover J, Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone. 1994 1994/11/01/;15(6):585-91.spa
dcterms.referencesKapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, et al. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomaterialia. 2014;10(7):3264-78.spa
dcterms.referencesHan P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomaterials Science. [10.1039/C2BM00108J]. 2013;1(4):379-92.spa
dcterms.referencesMouthuy P-A, Snelling SJB, Dakin SG, Milković L, Gašparović AČ, Carr AJ, et al. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials. 2016 2016/12/01/;109(Supplement C):55-68.spa
dcterms.referencesKapoor S, Semitela A, Goel A, Xiang Y, Du J, Lourenco AH, et al. Understanding the composition-structure-bioactivity relationships in diopside (CaO.MgO.2SiO(2))-tricalcium phosphate (3CaO.P(2)O(5)) glass system. Acta Biomater. 2015 Mar;15:210-26.spa
dcterms.referencesKansal I, Goel A, Tulyaganov DU, Santos LF, Ferreira JMF. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses. Journal of Materials Chemistry. [10.1039/C1JM10811E]. 2011;21(22):8074-84.spa
dc.identifier.doihttps://doi.org/10.1002/jbm.a.36093
dc.publisher.placeInglaterraspa
dc.relation.citationeditionVol.105 No.8.(2017)spa
dc.relation.citationendpage2275spa
dc.relation.citationissue8(2017)spa
dc.relation.citationstartpage2266spa
dc.relation.citationvolume105spa
dc.relation.citesParra, J., Garcia Paez, I. H., De Aza, A. H., Baudin, C., Rocio Martin, M., & Pena, P. (2017). In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co‐substituted tricalcium phosphate ceramics. Journal of Biomedical Materials Research Part A, 105(8), 2266-2275.
dc.relation.ispartofjournalJournal of Biomedical Materials Research Part Aspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalBioceramicseng
dc.subject.proposalbioactivityeng
dc.subject.proposalcell proliferationeng
dc.subject.proposalantioxidant propertieseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem